Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

adjust llm readme #8672

Merged
merged 4 commits into from
Jun 27, 2024
Merged

adjust llm readme #8672

merged 4 commits into from
Jun 27, 2024

Conversation

lugimzzz
Copy link
Contributor

@lugimzzz lugimzzz commented Jun 27, 2024

PR types

Bug fixes

PR changes

Docs

Description

调整llm readme

Copy link

paddle-bot bot commented Jun 27, 2024

Thanks for your contribution!

Copy link

codecov bot commented Jun 27, 2024

Codecov Report

All modified and coverable lines are covered by tests ✅

Project coverage is 55.79%. Comparing base (69be4db) to head (b1dfaef).
Report is 234 commits behind head on develop.

Additional details and impacted files
@@           Coverage Diff            @@
##           develop    #8672   +/-   ##
========================================
  Coverage    55.79%   55.79%           
========================================
  Files          620      620           
  Lines        96659    96659           
========================================
  Hits         53928    53928           
  Misses       42731    42731           

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

gongel
gongel previously approved these changes Jun 27, 2024
llm/README.md Outdated

- **大模型无损量化**。大模型套件内置了PaddleSlim团队自研的自适应Shift-SmoothQuant的A8W8量化算法和业界主流GPTQ的W4量化算法,实现了主流大模型的无损量化,有效加速模型推理。
- **大模型无损量化**。大模型套件内置了PaddleSlim团队自研的自适应Shift-SmoothQuant的A8W8量化算法和业界主流GPTQ、AWQ的W4量化算法,实现了主流大模型的无损量化,有效加速模型推理。
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

大模型套件内置了PaddleSlim团队自研的自适应Shift-SmoothQuant的A8W8
=》大模型套件预置了PaddleSlim PTQ.LLM量化算法和业界主流GPTQ、AWQ的W4量化

@@ -152,8 +152,8 @@ python run_finetune.py ./config/llama/pt_argument.json
更多大模型精调分布式使用文档、训练细节和效果请参见[大模型精调教程](./docs/finetune.md)。

### 3. 对齐
我们支持DPO等偏好对齐策略。DPO策略采用zero_padding策略,结合FlashMask策略,有效提升模型训练效率。

我们支持DPO、RLHF等偏好对齐策略。DPO策略采用zero_padding策略,结合FlashMask策略,有效提升模型训练效率。
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

DPO RLHF是并列关系吗?还是包含关系?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

并列关系

llm/README.md Outdated
| [Bloom](./config/bloom) | ❌ | ✅ | ✅ | ✅ | 🚧 | ✅ | ✅ |
| [GPT-3](./config/gpt-3) | ✅ | ✅ | 🚧 | 🚧 | 🚧 | 🚧 | ✅ |
| [OPT](./config/opt) | 🚧 | ✅ | ✅ | 🚧 | 🚧 | 🚧 | ✅ |
| Model | Pretrain | SFT | LoRA | Prefix Tuning | DPO | RLHF | Quantization | Weight convert |
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Weight Convert是什么意思?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

torch 权重转化

llm/docs/rlhf.md Outdated
@@ -239,7 +239,7 @@ PYTHONPATH=../../ GLOG_minloglevel=2 python -u -m paddle.distributed.launch run_

### 推理

训练完成后可以直接使用 `outpt_dir` 所指定目录中 policy 文件夹下的 checkpoints 按照[LLM 推理](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm#4-%E6%8E%A8%E7%90%86)部分的介绍来进行推理,请参考相应部分内容。
训练完成后可以直接使用 `outpt_dir` 所指定目录中 policy 文件夹下的 checkpoints 按照[LLM 推理](inference.md)部分的介绍来进行推理,请参考相应部分内容。
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

outpt_dir => output_dir?

llm/README.md Outdated
@@ -10,26 +10,26 @@

- **飞桨4D并行分布式策略**。 PaddleNLP Trainer 封装支持飞桨4D并行配置(数据并行、张量并行、流水线并行、 分组参数切分并行),屏蔽多硬件编程复杂性,用户可以修改Trainer配置组合多种预训练或精调过程的分布式策略,充分组合大模型4D并行训练能力,能有效提升在多模型、多硬件下的训练性能。

- **高效精调策略**。飞桨大模型套件提供SFT、PEFT等多种精调策略,搭载自研Zero Padding零填充优化策略有效减少训练数据中pad token的占比,提高模型训练效率。独创PEFT结合低比特和分布式并行策略,大幅降低大模型精调硬件门槛。
- **高效精调对齐策略**。飞桨大模型套件提供SFT、DPO、RLHF等精调对齐策略,搭载自研Zero Padding零填充优化策略有效减少训练数据中pad token的占比,提高模型训练效率。独创PEFT结合低比特和分布式并行策略,大幅降低大模型精调硬件门槛。
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

搭载这个动词一般是针对硬件?搭载XX策略比较少见,可以让大模型润色检查下。

@sijunhe sijunhe merged commit 513e21d into PaddlePaddle:develop Jun 27, 2024
8 of 11 checks passed
@lugimzzz lugimzzz deleted the readme branch August 22, 2024 12:19
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants