-
Notifications
You must be signed in to change notification settings - Fork 3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
235c24e
commit 818cd29
Showing
13 changed files
with
3,067 additions
and
111 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,258 @@ | ||
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
#pragma once | ||
|
||
#include "mla_write_cache.cuh" | ||
|
||
template <paddle::DataType T> | ||
void PrefillMLAWriteCache(const AppendAttnMetaData& meta_data, | ||
const paddle::Tensor& kv_nope, | ||
const paddle::Tensor& kv_pe, | ||
const paddle::Tensor& seq_lens, | ||
const paddle::Tensor& seq_lens_decoder, | ||
const paddle::Tensor& padding_offsets, | ||
const paddle::Tensor& cum_offsets, | ||
const paddle::Tensor& block_tables, | ||
const int max_seq_len, | ||
cudaStream_t& stream, | ||
paddle::Tensor* kv_cache) { | ||
typedef PDTraits<T> traits_; | ||
typedef typename traits_::DataType DataType_; | ||
typedef typename traits_::data_t data_t; | ||
|
||
auto max_blocks_per_seq = meta_data.max_blocks_per_seq; | ||
auto num_tokens = meta_data.token_nums; | ||
auto block_size = meta_data.block_size; | ||
auto nope_size = meta_data.head_dims_v; | ||
auto all_size = meta_data.head_dims; | ||
int pe_size = all_size - nope_size; | ||
auto kv_num_heads = meta_data.kv_num_heads; | ||
const uint32_t elem_nums = num_tokens * kv_num_heads * (nope_size + pe_size); | ||
|
||
constexpr int PackSize = 16 / sizeof(DataType_); | ||
const int pack_num = elem_nums / PackSize; | ||
const int blocksize = 128; | ||
int grid_size = 1; | ||
GetNumBlocks<128>(pack_num, &grid_size); | ||
|
||
prefill_absorb_cache_kernel<DataType_, PackSize> | ||
<<<grid_size, blocksize, 0, stream>>>( | ||
reinterpret_cast<DataType_*>( | ||
const_cast<data_t*>(kv_nope.data<data_t>())), | ||
reinterpret_cast<DataType_*>( | ||
const_cast<data_t*>(kv_pe.data<data_t>())), | ||
reinterpret_cast<DataType_*>(kv_cache->data<data_t>()), | ||
block_tables.data<int>(), | ||
padding_offsets.data<int>(), | ||
cum_offsets.data<int>(), | ||
seq_lens.data<int>(), | ||
seq_lens_decoder.data<int>(), | ||
max_seq_len, | ||
max_blocks_per_seq, | ||
kv_num_heads, | ||
nope_size, | ||
pe_size, | ||
block_size, | ||
elem_nums); | ||
} | ||
|
||
void PrefillMLAWriteCacheKernel(const paddle::Tensor& kv_nope, | ||
const paddle::Tensor& kv_pe, | ||
const paddle::Tensor& kv_cache, | ||
const paddle::Tensor& seq_lens, | ||
const paddle::Tensor& seq_lens_decoder, | ||
const paddle::Tensor& padding_offsets, | ||
const paddle::Tensor& cum_offsets, | ||
const paddle::Tensor& block_tables, | ||
const std::string& cache_quant_type_str, | ||
const int max_seq_len) { | ||
cudaStream_t stream = kv_pe.stream(); | ||
AppendAttnMetaData meta_data; | ||
const auto& kv_nope_dims = kv_nope.dims(); | ||
const auto& kv_pe_dims = kv_pe.dims(); | ||
const auto& kv_cache_dims = kv_cache.dims(); | ||
meta_data.kv_num_heads = kv_cache_dims[1]; | ||
const auto nope_size = kv_nope_dims[kv_nope_dims.size() - 1]; | ||
meta_data.head_dims = kv_cache_dims[3]; | ||
meta_data.head_dims_v = nope_size; | ||
|
||
meta_data.max_blocks_per_seq = block_tables.dims()[1]; | ||
meta_data.block_size = kv_cache_dims[2]; | ||
meta_data.batch_size = cum_offsets.dims()[0]; | ||
switch (kv_pe.dtype()) { | ||
case paddle::DataType::BFLOAT16: { | ||
return PrefillMLAWriteCache<paddle::DataType::BFLOAT16>( | ||
meta_data, | ||
kv_nope, | ||
kv_pe, | ||
seq_lens, | ||
seq_lens_decoder, | ||
padding_offsets, | ||
cum_offsets, | ||
block_tables, | ||
max_seq_len, | ||
stream, | ||
const_cast<paddle::Tensor*>(&kv_cache)); | ||
} | ||
case paddle::DataType::FLOAT16: { | ||
return PrefillMLAWriteCache<paddle::DataType::FLOAT16>( | ||
meta_data, | ||
kv_nope, | ||
kv_pe, | ||
seq_lens, | ||
seq_lens_decoder, | ||
padding_offsets, | ||
cum_offsets, | ||
block_tables, | ||
max_seq_len, | ||
stream, | ||
const_cast<paddle::Tensor*>(&kv_cache)); | ||
} | ||
} | ||
} | ||
|
||
template <paddle::DataType T> | ||
void DecodeMLAWriteCache(const AppendAttnMetaData& meta_data, | ||
const paddle::Tensor& kv_nope, | ||
const paddle::Tensor& kv_pe, | ||
const paddle::Tensor& seq_lens, | ||
const paddle::Tensor& seq_lens_encoder, | ||
const paddle::Tensor& padding_offsets, | ||
const paddle::Tensor& cum_offsets, | ||
const paddle::Tensor& block_tables, | ||
const int max_seq_len, | ||
cudaStream_t& stream, | ||
paddle::Tensor* kv_cache) { | ||
typedef PDTraits<T> traits_; | ||
typedef typename traits_::DataType DataType_; | ||
typedef typename traits_::data_t data_t; | ||
|
||
auto max_blocks_per_seq = meta_data.max_blocks_per_seq; | ||
auto bsz = meta_data.batch_size; | ||
auto block_size = meta_data.block_size; | ||
auto nope_size = meta_data.head_dims_v; | ||
auto all_size = meta_data.head_dims; | ||
int pe_size = all_size - nope_size; | ||
auto kv_num_heads = meta_data.kv_num_heads; | ||
const uint32_t elem_nums = bsz * kv_num_heads * (nope_size + pe_size); | ||
|
||
constexpr int PackSize = 16 / sizeof(DataType_); | ||
const int pack_num = elem_nums / PackSize; | ||
const int blocksize = 128; | ||
int grid_size = 1; | ||
GetNumBlocks<128>(pack_num, &grid_size); | ||
|
||
decode_absorb_cache_kernel<DataType_, PackSize> | ||
<<<grid_size, blocksize, 0, stream>>>( | ||
reinterpret_cast<DataType_*>( | ||
const_cast<data_t*>(kv_nope.data<data_t>())), | ||
reinterpret_cast<DataType_*>( | ||
const_cast<data_t*>(kv_pe.data<data_t>())), | ||
reinterpret_cast<DataType_*>(kv_cache->data<data_t>()), | ||
block_tables.data<int>(), | ||
cum_offsets.data<int>(), | ||
seq_lens.data<int>(), | ||
seq_lens_encoder.data<int>(), | ||
max_seq_len, | ||
max_blocks_per_seq, | ||
kv_num_heads, | ||
nope_size, | ||
pe_size, | ||
block_size, | ||
elem_nums); | ||
} | ||
|
||
void DecodeMLAWriteCacheKernel(const paddle::Tensor& kv_nope, | ||
const paddle::Tensor& kv_pe, | ||
const paddle::Tensor& kv_cache, | ||
const paddle::Tensor& seq_lens, | ||
const paddle::Tensor& seq_lens_encoder, | ||
const paddle::Tensor& padding_offsets, | ||
const paddle::Tensor& cum_offsets, | ||
const paddle::Tensor& block_tables, | ||
const std::string& cache_quant_type_str, | ||
const int max_seq_len) { | ||
cudaStream_t stream = kv_pe.stream(); | ||
AppendAttnMetaData meta_data; | ||
const auto& kv_nope_dims = kv_nope.dims(); | ||
const auto& kv_pe_dims = kv_pe.dims(); | ||
const auto& kv_cache_dims = kv_cache.dims(); | ||
meta_data.kv_num_heads = kv_cache_dims[1]; | ||
const auto nope_size = kv_nope_dims[kv_nope_dims.size() - 1]; | ||
meta_data.head_dims = kv_cache_dims[3]; | ||
meta_data.head_dims_v = nope_size; | ||
|
||
meta_data.max_blocks_per_seq = block_tables.dims()[1]; | ||
meta_data.block_size = kv_cache_dims[2]; | ||
meta_data.batch_size = cum_offsets.dims()[0]; | ||
switch (kv_pe.dtype()) { | ||
case paddle::DataType::BFLOAT16: { | ||
return DecodeMLAWriteCache<paddle::DataType::BFLOAT16>( | ||
meta_data, | ||
kv_nope, | ||
kv_pe, | ||
seq_lens, | ||
seq_lens_encoder, | ||
padding_offsets, | ||
cum_offsets, | ||
block_tables, | ||
max_seq_len, | ||
stream, | ||
const_cast<paddle::Tensor*>(&kv_cache)); | ||
} | ||
case paddle::DataType::FLOAT16: { | ||
return DecodeMLAWriteCache<paddle::DataType::FLOAT16>( | ||
meta_data, | ||
kv_nope, | ||
kv_pe, | ||
seq_lens, | ||
seq_lens_encoder, | ||
padding_offsets, | ||
cum_offsets, | ||
block_tables, | ||
max_seq_len, | ||
stream, | ||
const_cast<paddle::Tensor*>(&kv_cache)); | ||
} | ||
} | ||
} | ||
|
||
|
||
PD_BUILD_OP(prefill_mla_write_cache) | ||
.Inputs({"kv_nope", | ||
"kv_pe", | ||
"kv_cache", | ||
"seq_lens", | ||
"seq_lens_decoder", | ||
"padding_offsets", | ||
"cum_offsets", | ||
"block_tables"}) | ||
.Outputs({"kv_cache_out"}) | ||
.SetInplaceMap({{"kv_cache", "kv_cache_out"}}) | ||
.Attrs({"cache_quant_type_str: std::string", "max_seq_len: int"}) | ||
.SetKernelFn(PD_KERNEL(PrefillMLAWriteCacheKernel)); | ||
|
||
PD_BUILD_OP(decode_mla_write_cache) | ||
.Inputs({"kv_nope", | ||
"kv_pe", | ||
"kv_cache", | ||
"seq_lens", | ||
"seq_lens_encoder", | ||
"padding_offsets", | ||
"cum_offsets", | ||
"block_tables"}) | ||
.Outputs({"kv_cache_out"}) | ||
.SetInplaceMap({{"kv_cache", "kv_cache_out"}}) | ||
.Attrs({"cache_quant_type_str: std::string", "max_seq_len: int"}) | ||
.SetKernelFn(PD_KERNEL(DecodeMLAWriteCacheKernel)); |
Oops, something went wrong.