Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[xdoctest] reformat example code with google style in No.286-290 #56797

Merged
merged 6 commits into from
Sep 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 41 additions & 27 deletions python/paddle/incubate/operators/graph_reindex.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,33 +80,47 @@ def graph_reindex(
Examples:
.. code-block:: python

import paddle

x = [0, 1, 2]
neighbors_e1 = [8, 9, 0, 4, 7, 6, 7]
count_e1 = [2, 3, 2]
x = paddle.to_tensor(x, dtype="int64")
neighbors_e1 = paddle.to_tensor(neighbors_e1, dtype="int64")
count_e1 = paddle.to_tensor(count_e1, dtype="int32")

reindex_src, reindex_dst, out_nodes = \
paddle.incubate.graph_reindex(x, neighbors_e1, count_e1)
# reindex_src: [3, 4, 0, 5, 6, 7, 6]
# reindex_dst: [0, 0, 1, 1, 1, 2, 2]
# out_nodes: [0, 1, 2, 8, 9, 4, 7, 6]

neighbors_e2 = [0, 2, 3, 5, 1]
count_e2 = [1, 3, 1]
neighbors_e2 = paddle.to_tensor(neighbors_e2, dtype="int64")
count_e2 = paddle.to_tensor(count_e2, dtype="int32")

neighbors = paddle.concat([neighbors_e1, neighbors_e2])
count = paddle.concat([count_e1, count_e2])
reindex_src, reindex_dst, out_nodes = \
paddle.incubate.graph_reindex(x, neighbors, count)
# reindex_src: [3, 4, 0, 5, 6, 7, 6, 0, 2, 8, 9, 1]
# reindex_dst: [0, 0, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2]
# out_nodes: [0, 1, 2, 8, 9, 4, 7, 6, 3, 5]
>>> import paddle

>>> x = [0, 1, 2]
>>> neighbors_e1 = [8, 9, 0, 4, 7, 6, 7]
>>> count_e1 = [2, 3, 2]
>>> x = paddle.to_tensor(x, dtype="int64")
>>> neighbors_e1 = paddle.to_tensor(neighbors_e1, dtype="int64")
>>> count_e1 = paddle.to_tensor(count_e1, dtype="int32")

>>> reindex_src, reindex_dst, out_nodes = paddle.incubate.graph_reindex(
... x,
... neighbors_e1,
... count_e1,
... )
>>> print(reindex_src)
Tensor(shape=[7], dtype=int64, place=Place(cpu), stop_gradient=True,
[3, 4, 0, 5, 6, 7, 6])
>>> print(reindex_dst)
Tensor(shape=[7], dtype=int64, place=Place(cpu), stop_gradient=True,
[0, 0, 1, 1, 1, 2, 2])
>>> print(out_nodes)
Tensor(shape=[8], dtype=int64, place=Place(cpu), stop_gradient=True,
[0, 1, 2, 8, 9, 4, 7, 6])

>>> neighbors_e2 = [0, 2, 3, 5, 1]
>>> count_e2 = [1, 3, 1]
>>> neighbors_e2 = paddle.to_tensor(neighbors_e2, dtype="int64")
>>> count_e2 = paddle.to_tensor(count_e2, dtype="int32")

>>> neighbors = paddle.concat([neighbors_e1, neighbors_e2])
>>> count = paddle.concat([count_e1, count_e2])
>>> reindex_src, reindex_dst, out_nodes = paddle.incubate.graph_reindex(x, neighbors, count)
>>> print(reindex_src)
Tensor(shape=[12], dtype=int64, place=Place(cpu), stop_gradient=True,
[3, 4, 0, 5, 6, 7, 6, 0, 2, 8, 9, 1])
>>> print(reindex_dst)
Tensor(shape=[12], dtype=int64, place=Place(cpu), stop_gradient=True,
[0, 0, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2])
>>> print(out_nodes)
Tensor(shape=[10], dtype=int64, place=Place(cpu), stop_gradient=True,
[0, 1, 2, 8, 9, 4, 7, 6, 3, 5])

"""
if flag_buffer_hashtable:
Expand Down
29 changes: 16 additions & 13 deletions python/paddle/incubate/operators/graph_sample_neighbors.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,19 +80,22 @@ def graph_sample_neighbors(
Examples:
.. code-block:: python

import paddle
# edges: (3, 0), (7, 0), (0, 1), (9, 1), (1, 2), (4, 3), (2, 4),
# (9, 5), (3, 5), (9, 6), (1, 6), (9, 8), (7, 8)
row = [3, 7, 0, 9, 1, 4, 2, 9, 3, 9, 1, 9, 7]
colptr = [0, 2, 4, 5, 6, 7, 9, 11, 11, 13, 13]
nodes = [0, 8, 1, 2]
sample_size = 2
row = paddle.to_tensor(row, dtype="int64")
colptr = paddle.to_tensor(colptr, dtype="int64")
nodes = paddle.to_tensor(nodes, dtype="int64")
out_neighbors, out_count = \
paddle.incubate.graph_sample_neighbors(row, colptr, nodes,
sample_size=sample_size)
>>> import paddle
>>> # edges: (3, 0), (7, 0), (0, 1), (9, 1), (1, 2), (4, 3), (2, 4),
>>> # (9, 5), (3, 5), (9, 6), (1, 6), (9, 8), (7, 8)
>>> row = [3, 7, 0, 9, 1, 4, 2, 9, 3, 9, 1, 9, 7]
>>> colptr = [0, 2, 4, 5, 6, 7, 9, 11, 11, 13, 13]
>>> nodes = [0, 8, 1, 2]
>>> sample_size = 2
>>> row = paddle.to_tensor(row, dtype="int64")
>>> colptr = paddle.to_tensor(colptr, dtype="int64")
>>> nodes = paddle.to_tensor(nodes, dtype="int64")
>>> out_neighbors, out_count = paddle.incubate.graph_sample_neighbors(
... row,
... colptr,
... nodes,
... sample_size=sample_size
... )

"""

Expand Down
58 changes: 34 additions & 24 deletions python/paddle/incubate/operators/graph_send_recv.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,30 +91,40 @@ def graph_send_recv(

.. code-block:: python

import paddle

x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
src_index = indexes[:, 0]
dst_index = indexes[:, 1]
out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum")
# Outputs: [[0., 2., 3.], [2., 8., 10.], [1., 4., 5.]]

x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
src_index = indexes[:, 0]
dst_index = indexes[:, 1]
out_size = paddle.max(dst_index) + 1
out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum", out_size=out_size)
# Outputs: [[0., 2., 3.], [[2., 8., 10.]]]

x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
src_index = indexes[:, 0]
dst_index = indexes[:, 1]
out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum")
# Outputs: [[0., 2., 3.], [2., 8., 10.], [0., 0., 0.]]

>>> import paddle

>>> x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
>>> indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
>>> src_index = indexes[:, 0]
>>> dst_index = indexes[:, 1]
>>> out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum")
>>> print(out)
Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
[[0. , 2. , 3. ],
[2. , 8. , 10.],
[1. , 4. , 5. ]])

>>> x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
>>> indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
>>> src_index = indexes[:, 0]
>>> dst_index = indexes[:, 1]
>>> out_size = paddle.max(dst_index) + 1
>>> out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum", out_size=out_size)
>>> print(out)
Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
[[0. , 2. , 3. ],
[2. , 8. , 10.]])

>>> x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
>>> indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
>>> src_index = indexes[:, 0]
>>> dst_index = indexes[:, 1]
>>> out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum")
>>> print(out)
Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
[[0. , 2. , 3. ],
[2. , 8. , 10.],
[0. , 0. , 0. ]])
"""

if pool_type not in ["sum", "mean", "max", "min"]:
Expand Down
17 changes: 9 additions & 8 deletions python/paddle/incubate/operators/softmax_mask_fuse.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,20 +40,21 @@ def softmax_mask_fuse(x, mask, name=None):
For more information, please refer to :ref:`api_guide_Name`.

Returns:
4-D Tensor. A location into which the result is stored. Its dimension is 4D. Has same shape with x.
4-D Tensor. A location into which the result is stored. It's dimension is 4D. Has same shape with x.

Examples:
.. code-block:: python

# required: gpu
import paddle
import paddle.incubate as incubate
>>> # doctest: +REQUIRES(env:GPU)
>>> import paddle
>>> import paddle.incubate as incubate

x = paddle.rand([2, 8, 8, 32])
mask = paddle.rand([2, 1, 8, 32])
>>> x = paddle.rand([2, 8, 8, 32])
>>> mask = paddle.rand([2, 1, 8, 32])

rst = incubate.softmax_mask_fuse(x, mask)
# [[[[0.02404429, 0.04658398, 0.02746007, ..., 0.01489375, 0.02397441, 0.02851614] ... ]]]
>>> rst = incubate.softmax_mask_fuse(x, mask)
>>> rst.shape
[2, 8, 8, 32]
"""
if in_dynamic_mode():
out = _legacy_C_ops.fused_softmax_mask(x, mask)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -38,22 +38,35 @@ def softmax_mask_fuse_upper_triangle(x):
The third dimension of x must be same with the fourth dimension of x.

Returns:
4-D Tensor. A location into which the result is stored. Its dimension is 4D. Has same dimension with x.
4-D Tensor. A location into which the result is stored. It's dimension is 4D. Has same dimension with x.

Examples:
.. code-block:: python

# required: gpu
import paddle
import paddle.incubate as incubate
>>> # doctest: +REQUIRES(env:GPU)
>>> import paddle
>>> import paddle.incubate as incubate

x = paddle.rand((1, 1, 32, 32))
>>> paddle.seed(1)
>>> paddle.set_device("gpu")
>>> x = paddle.rand((1, 1, 32, 32))

rst = incubate.softmax_mask_fuse_upper_triangle(x)
# [[[[1. , 0. , 0. , ..., 0., 0., 0.],
# [0.45324376, 0.54675621, 0. , ..., 0., 0., 0.],
# [0.32674268, 0.28156221, 0.39169508, ..., 0., 0., 0.]
# ... ]]]
>>> rst = incubate.softmax_mask_fuse_upper_triangle(x)
>>> print(rst)
Tensor(shape=[1, 1, 32, 32], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[[[[1. , 0. , 0. , ..., 0. ,
0. , 0. ],
[0.49575609, 0.50424391, 0. , ..., 0. ,
0. , 0. ],
[0.26035303, 0.25114325, 0.48850375, ..., 0. ,
0. , 0. ],
...,
[0.04379999, 0.04194880, 0.05150032, ..., 0.02721255,
0. , 0. ],
[0.02348574, 0.01959674, 0.02609110, ..., 0.04046615,
0.02248267, 0. ],
[0.02280738, 0.03144657, 0.02892209, ..., 0.03885521,
0.03342311, 0.02842640]]]])
"""
if in_dynamic_mode():
out = _legacy_C_ops.fused_softmax_mask_upper_triangle(x)
Expand Down