Skip to content
250 changes: 250 additions & 0 deletions tests/operators/test_masked_per_token_quant.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,250 @@
import os
import unittest

import numpy as np
import paddle

from fastdeploy.model_executor.ops.gpu import masked_per_token_quant


def masked_per_token_quant_ref(input_tensor, recv_expert_count, block_size):
"""
Paddle API implementation of masked_per_token_quant

Args:
input_tensor: Input tensor with shape [num_local_expert, num_max_tokens_per_expert, hidden_size]
recv_expert_count: Expert token count tensor with shape [num_local_expert]
block_size: Quantization block size

Returns:
Tuple of (quantized_tensor, scale_tensor)
"""
MAX_VALUE = 448.0
epsilon = 1e-10

# Get dimensions
input_shape = input_tensor.shape
num_local_expert = input_shape[0]
num_max_tokens_per_expert = input_shape[1]
hidden_size = input_shape[2]

# CUDA kernel uses: hidden_size_scale = hidden_size / block_size (integer division)
# This assumes hidden_size is divisible by block_size
hidden_size_scale = hidden_size // block_size

# Check environment variable for fine-grained range
use_finegrained_range = False
env_var = os.getenv("PER_TOKEN_QUANT_FP8_USE_FINEGRAINED_RANGE")
if env_var:
use_finegrained_range = bool(int(env_var))

# Create mask for valid tokens based on recv_expert_count
token_indices = paddle.arange(num_max_tokens_per_expert, dtype="int32").unsqueeze(
0
) # [1, num_max_tokens_per_expert]
expert_counts = recv_expert_count.unsqueeze(1) # [num_local_expert, 1]
valid_mask = token_indices < expert_counts # [num_local_expert, num_max_tokens_per_expert]

# Reshape input for block-wise processing
# [num_local_expert, num_max_tokens_per_expert, hidden_size_scale, block_size]
reshaped_input = paddle.reshape(
input_tensor, [num_local_expert, num_max_tokens_per_expert, hidden_size_scale, block_size]
).astype("float32")

# Calculate max absolute values per block
max_abs_val = paddle.max(
paddle.abs(reshaped_input), axis=-1, keepdim=True
) # [num_local_expert, num_max_tokens_per_expert, hidden_size_scale, 1]
max_abs_val = paddle.clip(max_abs_val, min=epsilon)

# Apply valid mask - set invalid tokens' max values to epsilon
valid_mask_expanded = valid_mask.unsqueeze(2).unsqueeze(3) # [num_local_expert, num_max_tokens_per_expert, 1, 1]
max_abs_val = paddle.where(valid_mask_expanded, max_abs_val, paddle.to_tensor(epsilon))

# Apply fine-grained range if enabled
if use_finegrained_range:
max_abs_val *= 7.0

# Calculate scale
scale = max_abs_val / MAX_VALUE

# Quantize
quanted_value = reshaped_input / scale

# Convert to float8_e4m3fn and reshape back
quanted_x_reshaped = quanted_value.astype("float8_e4m3fn")
quanted_x = paddle.reshape(quanted_x_reshaped, [num_local_expert, num_max_tokens_per_expert, hidden_size])

# Apply valid mask to quantized output - convert to float32 first, then back to float8_e4m3fn
valid_mask_full = valid_mask.unsqueeze(2) # [num_local_expert, num_max_tokens_per_expert, 1]
quanted_x_float32 = quanted_x.astype("float32")
quanted_x_masked_float32 = paddle.where(valid_mask_full, quanted_x_float32, paddle.zeros_like(quanted_x_float32))
quanted_x = quanted_x_masked_float32.astype("float8_e4m3fn")

# Prepare scale output - squeeze the last dimension
quanted_scale = paddle.squeeze(scale, axis=-1) # [num_local_expert, num_max_tokens_per_expert, hidden_size_scale]

# Apply valid mask to scale
valid_mask_scale = valid_mask.unsqueeze(2) # [num_local_expert, num_max_tokens_per_expert, 1]
quanted_scale = paddle.where(valid_mask_scale, quanted_scale, paddle.zeros_like(quanted_scale))

return quanted_x, quanted_scale


class TestMaskedPerTokenQuant(unittest.TestCase):
def setUp(self) -> None:
paddle.seed(2024)
self.num_local_expert = 2
self.num_max_tokens_per_expert = 4
self.hidden_size = 256
self.block_size = 128
self.dtype = paddle.bfloat16

self.input_tensor = paddle.randn(
[self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype
)
self.recv_expert_count = paddle.to_tensor([3, 2], dtype="int32")

# Get reference results from paddle implementation
self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref(
self.input_tensor, self.recv_expert_count, self.block_size
)

def _mask_invalid_tokens(self, quanted_x, quanted_scale, recv_expert_count):
"""Apply mask to zero out invalid tokens"""
token_indices = paddle.arange(self.num_max_tokens_per_expert, dtype="int32").unsqueeze(0)
expert_counts = recv_expert_count.unsqueeze(1)
valid_mask = token_indices < expert_counts

# Apply mask to quantized values - convert to float32 first
valid_mask_full = valid_mask.unsqueeze(2)
quanted_x_float32 = quanted_x.astype("float32")
quanted_x_masked_float32 = paddle.where(
valid_mask_full, quanted_x_float32, paddle.zeros_like(quanted_x_float32)
)
quanted_x_masked = quanted_x_masked_float32.astype("float8_e4m3fn")

# Apply mask to scale values
valid_mask_scale = valid_mask.unsqueeze(2)
quanted_scale_masked = paddle.where(valid_mask_scale, quanted_scale, paddle.zeros_like(quanted_scale))

return quanted_x_masked, quanted_scale_masked

def test_masked_per_token_quant_basic(self):
"""Test basic functionality against CUDA kernel"""
quanted_x_cuda, quanted_scale_cuda = masked_per_token_quant(
self.input_tensor, self.recv_expert_count, self.block_size
)

quanted_x_cuda_masked, quanted_scale_cuda_masked = self._mask_invalid_tokens(
quanted_x_cuda, quanted_scale_cuda, self.recv_expert_count
)

# Check output shapes
self.assertEqual(quanted_x_cuda.shape, self.quanted_x_ref.shape)
self.assertEqual(quanted_scale_cuda.shape, self.quanted_scale_ref.shape)

# Check dtypes
self.assertEqual(quanted_x_cuda.dtype, paddle.float8_e4m3fn)
self.assertEqual(quanted_scale_cuda.dtype, paddle.float32)

# Compare scale values (using masked versions)
np.testing.assert_allclose(
self.quanted_scale_ref.numpy(), quanted_scale_cuda_masked.numpy(), rtol=1e-5, atol=1e-6
)

# Compare quantized values (convert to float32 for comparison, using masked versions)
quant_diff = paddle.mean(
paddle.abs(quanted_x_cuda_masked.astype("float32") - self.quanted_x_ref.astype("float32"))
) / paddle.mean(paddle.abs(self.quanted_x_ref.astype("float32")) + 1e-9)
diff_val = float(quant_diff.numpy().item())
self.assertLess(diff_val, 0.01, msg="Quantized values should be close")


class TestMaskedPerTokenQuantCase1(TestMaskedPerTokenQuant):
"""Test with float16 input"""

def setUp(self) -> None:
paddle.seed(2024)
self.num_local_expert = 3
self.num_max_tokens_per_expert = 6
self.hidden_size = 512
self.block_size = 128
self.dtype = paddle.float16

self.input_tensor = paddle.randn(
[self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype
)
self.recv_expert_count = paddle.to_tensor([4, 2, 5], dtype="int32")

self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref(
self.input_tensor, self.recv_expert_count, self.block_size
)


class TestMaskedPerTokenQuantCase2(TestMaskedPerTokenQuant):
"""Test with different hidden size"""

def setUp(self) -> None:
paddle.seed(2024)
self.num_local_expert = 4
self.num_max_tokens_per_expert = 8
self.hidden_size = 384 # 3 * 128
self.block_size = 128
self.dtype = paddle.bfloat16

self.input_tensor = paddle.randn(
[self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype
)
self.recv_expert_count = paddle.to_tensor([6, 3, 7, 1], dtype="int32")

self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref(
self.input_tensor, self.recv_expert_count, self.block_size
)


class TestMaskedPerTokenQuantCase3(TestMaskedPerTokenQuant):
"""Test with all experts having max tokens"""

def setUp(self) -> None:
paddle.seed(2024)
self.num_local_expert = 2
self.num_max_tokens_per_expert = 4
self.hidden_size = 256
self.block_size = 128
self.dtype = paddle.bfloat16

self.input_tensor = paddle.randn(
[self.num_local_expert, self.num_max_tokens_per_expert, self.hidden_size], dtype=self.dtype
)
# All experts use all tokens
self.recv_expert_count = paddle.to_tensor([4, 4], dtype="int32")

self.quanted_x_ref, self.quanted_scale_ref = masked_per_token_quant_ref(
self.input_tensor, self.recv_expert_count, self.block_size
)


class TestMaskedPerTokenQuantEdgeCases(unittest.TestCase):
"""Test edge cases"""

def test_zero_tokens_expert(self):
"""Test expert with zero tokens"""
paddle.seed(2024)
input_tensor = paddle.randn([2, 4, 256], dtype="bfloat16")
recv_expert_count = paddle.to_tensor([0, 2], dtype="int32") # First expert has no tokens

quanted_x_ref, quanted_scale_ref = masked_per_token_quant_ref(input_tensor, recv_expert_count, 128)

# First expert should be all zeros - convert to float32 for comparison
expert_0_quanted = quanted_x_ref[0].astype("float32")
self.assertTrue(paddle.all(expert_0_quanted == 0), "Expert with zero tokens should be all zero")
self.assertTrue(paddle.all(quanted_scale_ref[0] == 0), "Expert with zero tokens should have zero scales")

# Second expert should have valid values - convert to float32 for comparison
expert_1_quanted = quanted_x_ref[1, :2].astype("float32")
self.assertTrue(paddle.any(expert_1_quanted != 0), "Expert with tokens should have non-zero values")


if __name__ == "__main__":
unittest.main()
Loading