Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
203 changes: 203 additions & 0 deletions tests/operators/test_update_inputs_v1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import paddle

from fastdeploy.model_executor.ops.gpu import update_inputs_v1


def update_inputs_kernel_v1(
not_need_stop,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_seq_lens_decoder,
prompt_lens,
topk_ids,
input_ids,
block_tables,
stop_nums,
stop_flags,
is_block_step,
next_tokens,
bsz,
max_bsz,
input_ids_stride,
block_num_per_seq,
block_size,
):
stop_flag_now = False
stop_flag_now_int = np.zeros([max_bsz])
for thread_idx in range(max_bsz):
if thread_idx < bsz:
stop_flag_now = stop_flags[thread_idx]
stop_flag_now_int[thread_idx] = int(stop_flag_now)
else:
stop_flag_now_int[thread_idx] = 1

for thread_idx in range(bsz):
stop_flag_now = stop_flags[thread_idx]
if stop_flag_now:
seq_lens_this_time[thread_idx] = 0 # stop at next step
seq_lens_decoder[thread_idx] = 0
seq_lens_encoder[thread_idx] = 0
else:
if seq_lens_this_time[thread_idx] + seq_lens_decoder[thread_idx] >= prompt_lens[thread_idx]:
# decoding
seq_lens_decoder[thread_idx] += seq_lens_this_time[thread_idx]
seq_lens_this_time[thread_idx] = 1
seq_lens_encoder[thread_idx] = 0
input_ids_now = input_ids[thread_idx]
input_ids_now[0] = next_tokens[thread_idx]

# to judge whether block is not enough
block_table_now = block_tables[thread_idx]
if (
seq_lens_this_time[thread_idx] != 0
and block_table_now[int(seq_lens_decoder[thread_idx] / block_size)] == -1
):
# should be scheduled by server
is_block_step[thread_idx] = True
seq_lens_this_time[thread_idx] = 0
stop_flags[thread_idx] = True
step_seq_lens_decoder[thread_idx] = seq_lens_decoder[thread_idx]
seq_lens_decoder[thread_idx] = 0
stop_flag_now_int[thread_idx] = 1
else:
stop_flags[thread_idx] = True
seq_lens_this_time[thread_idx] = 0
seq_lens_decoder[thread_idx] = 0
seq_lens_encoder[thread_idx] = 0
topk_ids[thread_idx] = -1
stop_flag_now_int[thread_idx] = 1
stop_sum = np.sum(stop_flag_now_int)
not_need_stop[0] = stop_sum < stop_nums[0]


def update_inputs_v1_ref(
stop_flags,
not_need_stop,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_seq_lens_decoder,
prompt_lens,
topk_ids,
input_ids,
block_tables,
stop_nums,
next_tokens,
is_block_step,
block_size,
):
max_bsz = stop_flags.shape[0]
now_bsz = seq_lens_this_time.shape[0]
input_ids_stride = input_ids.shape[1]
block_num_per_seq = block_tables.shape[1]
update_inputs_kernel_v1(
not_need_stop,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_seq_lens_decoder,
prompt_lens,
topk_ids,
input_ids,
block_tables,
stop_nums,
stop_flags,
is_block_step,
next_tokens,
now_bsz,
max_bsz,
input_ids_stride,
block_num_per_seq,
block_size,
)


class TestUpdateInputsV1(unittest.TestCase):
def test_update_inputs_v1(self):
np.random.seed(2023)

bs = 48
max_bs = 64
max_input_length = 100

stop_flags = np.random.randint(0, 2, max_bs).astype("bool")
not_need_stop = np.array([1], "bool")
seq_lens_this_time = np.zeros([bs], "int32")
seq_lens_encoder = np.zeros([max_bs], "int32")
seq_lens_decoder = np.zeros([max_bs], "int32")
for i in range(bs):
if i % 2 == 0:
seq_lens_encoder[i] = i
seq_lens_this_time[i] = i
else:
seq_lens_decoder[i] = i
seq_lens_this_time[i] = 1
step_seq_lens_decoder = np.zeros([bs], "int32")
prompt_lens = np.random.randint(0, 10, [max_bs], dtype="int64")
topk_ids = np.zeros([bs], "int64")
input_ids = np.random.randint(1, 10, [max_bs, max_input_length], "int64")
block_tables = np.zeros([max_bs, 1], "int32")
stop_nums = np.array([max_bs], "int64")
next_tokens = np.random.randint(1, 10, [max_bs], "int64")
is_block_step = np.random.randint(0, 2, [max_bs]).astype("bool")

stop_flags = paddle.to_tensor(stop_flags)
not_need_stop = paddle.to_tensor(not_need_stop, place=paddle.CPUPlace())
seq_lens_this_time = paddle.to_tensor(seq_lens_this_time)
seq_lens_encoder = paddle.to_tensor(seq_lens_encoder)
seq_lens_decoder = paddle.to_tensor(seq_lens_decoder)
step_seq_lens_decoder = paddle.to_tensor(step_seq_lens_decoder)
prompt_lens = paddle.to_tensor(prompt_lens)
topk_ids = paddle.to_tensor(topk_ids)
input_ids = paddle.to_tensor(input_ids)
block_tables = paddle.to_tensor(block_tables)
stop_nums = paddle.to_tensor(stop_nums)
next_tokens = paddle.to_tensor(next_tokens)
is_block_step = paddle.to_tensor(is_block_step)
block_size = 1024

inputs = (
stop_flags,
not_need_stop,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_seq_lens_decoder,
prompt_lens,
topk_ids,
input_ids,
block_tables,
stop_nums,
next_tokens,
is_block_step,
block_size,
)
# inplace modify, need to clone inputs
inputs_clone = [x.clone() if isinstance(x, paddle.Tensor) else x for x in inputs]
update_inputs_v1(*inputs)
update_inputs_v1_ref(*inputs_clone)
compare_indexs = [1, 2, 3, 4, 5, 8]
for idx in compare_indexs:
np.testing.assert_allclose(inputs[idx], inputs_clone[idx])


if __name__ == "__main__":
unittest.main()
Loading