Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
248 changes: 248 additions & 0 deletions tests/operators/test_draft_model_update.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np
import paddle

from fastdeploy.model_executor.ops.gpu import draft_model_update


def is_in_end(id, end_ids, length):
flag = False
for i in range(length):
if id == end_ids[i]:
return True
return flag


# recalculate data offset, offset_new is starting from index 0
def get_inter_next_tokens_start_offset(inter_next_tokens, max_seq_len, start_id, offset):
offset_new = start_id + offset
return inter_next_tokens[int(offset_new / max_seq_len)][int(offset_new % max_seq_len)]


def draft_model_update_kernel(
inter_next_tokens,
draft_tokens,
pre_ids,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_idx,
output_cum_offsets,
stop_flags,
not_need_stop,
max_dec_len,
end_ids,
base_model_draft_tokens,
bsz,
max_draft_token,
pre_id_length,
max_base_model_draft_token,
end_ids_len,
max_seq_len,
substep,
prefill_one_step_stop,
):
stop_sum = 0
for tid in range(bsz):
stop_flag_now_int = 0
draft_token_now = draft_tokens[tid]
pre_ids_now = pre_ids[tid]
base_model_draft_tokens_now = base_model_draft_tokens[tid]
next_tokens_start_id = tid * max_seq_len - output_cum_offsets[tid]
# next_tokens_start =
seq_len_this_time = seq_lens_this_time[tid]
seq_len_encoder = seq_lens_encoder[tid]
seq_len_decoder = seq_lens_decoder[tid]

# 1. update step_idx && seq_lens_dec
if not stop_flags[tid]: # seq_lens_decoder > 0 or seq_lens_encoder > 0
token_this_time = -1
# decoder step
if seq_len_decoder > 0 and seq_len_encoder <= 0:
seq_lens_decoder[tid] += seq_len_this_time
token_this_time = get_inter_next_tokens_start_offset(
inter_next_tokens, max_seq_len, next_tokens_start_id, seq_len_this_time - 1
)
draft_token_now[0] = token_this_time
base_model_draft_tokens_now[substep + 1] = token_this_time
step_idx[tid] += seq_len_this_time
pre_ids_now[step_idx[tid]] = token_this_time
else:
token_this_time = get_inter_next_tokens_start_offset(
inter_next_tokens, max_seq_len, next_tokens_start_id, 0
)

# seq_lens_decoder[tid] = seq_lens_encoder[tid]
seq_lens_decoder[tid] = seq_len_encoder + seq_len_decoder
seq_lens_encoder[tid] = 0
pre_ids_now[1] = token_this_time
step_idx[tid] += 1
draft_token_now[0] = token_this_time
base_model_draft_tokens_now[substep + 1] = token_this_time

# multi_end
if is_in_end(token_this_time, end_ids, end_ids_len) or prefill_one_step_stop:
stop_flags[tid] = True
stop_flag_now_int = 1
# max_dec_len
elif step_idx[tid] >= max_dec_len[tid]:
stop_flags[tid] = True
draft_token_now[seq_len_this_time - 1] = end_ids[0]
base_model_draft_tokens_now[substep + 1] = end_ids[0]
stop_flag_now_int = 1
else:
draft_token_now[0] = -1
base_model_draft_tokens_now[substep + 1] = -1
stop_flag_now_int = 1

# 2. set end
if not stop_flags[tid]:
seq_lens_this_time[tid] = 1
else:
seq_lens_this_time[tid] = 0
seq_lens_encoder[tid] = 0

stop_sum = stop_sum + stop_flag_now_int
not_need_stop[0] = stop_sum < bsz


def draft_model_update_ref(
inter_next_tokens,
draft_tokens,
pre_ids,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_idx,
output_cum_offsets,
stop_flags,
not_need_stop,
max_dec_len,
end_ids,
base_model_draft_tokens,
max_seq_len,
substep,
):
seq_lens_this_time_shape = seq_lens_this_time.shape
real_bsz = seq_lens_this_time_shape[0]
end_ids_len = end_ids.shape[0]
max_draft_token = draft_tokens.shape[1]
pre_id_length = pre_ids.shape[1]
max_base_model_draft_token = base_model_draft_tokens.shape[1]

prefill_one_step_stop = False
import os

env = os.getenv("PREFILL_NODE_ONE_STEP_STOP")
if env == "1":
prefill_one_step_stop = True

draft_model_update_kernel(
inter_next_tokens,
draft_tokens,
pre_ids,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_idx,
output_cum_offsets,
stop_flags,
not_need_stop,
max_dec_len,
end_ids,
base_model_draft_tokens,
real_bsz,
max_draft_token,
pre_id_length,
max_base_model_draft_token,
end_ids_len,
max_seq_len,
substep,
prefill_one_step_stop,
)


class TestDraftModelUpdate(unittest.TestCase):
def test_draft_model_update(self):
self._run_paddle_test()

def _run_paddle_test(self):
np.random.seed(42)
paddle.seed(42)

max_bsz = 128
max_draft_token = 3
pre_id_length = 3
max_seq_len = 100
max_base_model_draft_token = 4
substep = 2

inter_next_tokens = paddle.randint(1, 100, shape=(max_bsz, max_seq_len), dtype="int64")
draft_tokens = paddle.randint(1, 100, shape=(max_bsz, max_draft_token), dtype="int64")
pre_ids = paddle.randint(1, 100, shape=(max_bsz, pre_id_length), dtype="int64")
seq_lens_this_time = paddle.randint(1, 2, shape=(max_bsz,), dtype="int32")
seq_lens_encoder = paddle.randint(1, 10, shape=(max_bsz,), dtype="int32")
seq_lens_decoder = paddle.randint(1, 10, shape=(max_bsz,), dtype="int32")
step_idx = paddle.randint(1, 10, shape=(max_bsz,), dtype="int64")
output_cum_offsets = paddle.randint(0, 2, shape=(max_bsz,), dtype="int32")
output_cum_offsets[0] = 0
stop_flags = paddle.zeros([max_bsz], dtype="bool")
not_need_stop = paddle.zeros([1], dtype="bool").to(device=paddle.CPUPlace())
max_dec_len = paddle.randint(100, 102, shape=(max_bsz,), dtype="int64")
end_ids = paddle.to_tensor([2], dtype="int64")
base_model_draft_tokens = paddle.randint(1, 10, shape=(max_bsz, max_base_model_draft_token), dtype="int64")

inputs = (
inter_next_tokens,
draft_tokens,
pre_ids,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_idx,
output_cum_offsets,
stop_flags,
not_need_stop,
max_dec_len,
end_ids,
base_model_draft_tokens,
max_seq_len,
substep,
)
# inplace modify, need to clone inputs
inputs_clone = [x.clone() if isinstance(x, paddle.Tensor) else x for x in inputs]
draft_model_update(*inputs)
draft_model_update_ref(*inputs_clone)
idx_list = (
1,
2,
3,
4,
5,
6,
8,
9,
12,
)
for i in idx_list:
np.testing.assert_allclose(inputs[i].numpy(), inputs_clone[i].numpy())


if __name__ == "__main__":
unittest.main()
Loading
Loading