Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
120 changes: 120 additions & 0 deletions tests/operators/test_cutlass_fp8_fp8_fp8_dual_gemm_fused.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import unittest
from itertools import product

import numpy as np
import paddle

from fastdeploy.model_executor.ops.gpu import cutlass_fp8_fp8_fp8_dual_gemm_fused


class TestFp8Fp8Fp8DualGemm(unittest.TestCase):
def setUp(self):
"""
Initialize the test environment,
including setting random seeds and environment variables.
"""
paddle.seed(2024)
self.prop = paddle.device.cuda.get_device_properties()
self.sm_version = self.prop.major * 10 + self.prop.minor
print(f"sm version: {self.sm_version}")
self.E4M3_MAX_POS = 448.0
os.environ["FLAGS_cuda_core_fp8_gemm"] = "1"
print(paddle.device.cuda.get_device_properties())
print(paddle.__git_commit__)

def test_dual_gemm_case(self):
"""
Check if the cutlass_fp8_fp8_fp8_dual_gemm_fused function works properly.
"""
if self.sm_version < 90:
self.skipTest("cutlass_fp8_fp8_fp8_dual_gemm_fused only support sm90+")
nks = [
[2048, 2048],
[2048, 5504],
[6144, 2048],
[4096, 4096],
[4096, 12800],
[6144, 4096],
[5120, 5120],
[5120, 13824],
[15360, 5120],
]
m_values = [1, 2, 3, 4]
transpose_combinations = [(False, True)]
activation_types = [""]

combinations = product(m_values, nks, transpose_combinations, activation_types)
for m, (n, k), (trans_x, trans_y), act_type in combinations:
x = (
paddle.rand([m, k] if not trans_x else [k, m])
.clip(min=-self.E4M3_MAX_POS, max=self.E4M3_MAX_POS)
.to(paddle.float8_e4m3fn)
)

y0 = (
paddle.rand([k, n] if not trans_y else [n, k])
.clip(min=-self.E4M3_MAX_POS, max=self.E4M3_MAX_POS)
.to(paddle.float8_e4m3fn)
)

y1 = (
paddle.rand([k, n] if not trans_y else [n, k])
.clip(min=-self.E4M3_MAX_POS, max=self.E4M3_MAX_POS)
.to(paddle.float8_e4m3fn)
)

scale0 = 1.2
scale1 = 0.8
scale_out = 1.0

x_bf16 = x.astype("bfloat16")
y0_bf16 = y0.astype("bfloat16")
y1_bf16 = y1.astype("bfloat16")

gemm0 = paddle.matmul(x_bf16, y0_bf16, transpose_x=trans_x, transpose_y=trans_y)
gemm1 = paddle.matmul(x_bf16, y1_bf16, transpose_x=trans_x, transpose_y=trans_y)

gemm0 = gemm0 * scale0
gemm1 = gemm1 * scale1

if act_type == "" or act_type == "swiglu":
ref_out = gemm0 * paddle.nn.functional.sigmoid(gemm1)

ref_out = ref_out.clip(min=-self.E4M3_MAX_POS, max=self.E4M3_MAX_POS).to(paddle.float8_e4m3fn)

result = cutlass_fp8_fp8_fp8_dual_gemm_fused(
x,
y0,
y1,
bias0=None,
bias1=None,
transpose_x=trans_x,
transpose_y=trans_y,
scale0=scale0,
scale1=scale1,
scale_out=scale_out,
activation_type=act_type,
)

np.testing.assert_allclose(
ref_out.astype("float32").numpy(), result.astype("float32").numpy(), rtol=5e-3, atol=5e-3
)


if __name__ == "__main__":
unittest.main()
Loading