Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
134 changes: 134 additions & 0 deletions tests/operators/test_fused_rotary_position_encoding.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import paddle

from fastdeploy.model_executor.ops.gpu import fused_rotary_position_encoding


class TestFusedRotaryPositionEncoding(unittest.TestCase):
def setUp(self):
paddle.set_device("gpu")
np.random.seed(42)

def _make_cos_sin_cache(self, max_position: int, rot_dim: int) -> np.ndarray:
"""Generate cos/sin cache."""
assert rot_dim % 2 == 0, "rot_dim must be even"
half_dim = rot_dim // 2
inv_freq = 1.0 / (10000 ** (np.arange(0, half_dim).astype("float32") / half_dim))
positions = np.arange(max_position, dtype="float32")
freqs = np.outer(positions, inv_freq) # [max_position, half_dim]
cos_np = np.cos(freqs)
sin_np = np.sin(freqs)
return np.concatenate([cos_np, sin_np], axis=1).astype("float32")

def _ref_rotary(self, query, key, position_ids, cos_sin_cache, head_size, is_neox):
"""Numpy reference implementation."""
num_tokens, num_heads, _ = query.shape
num_kv_heads = key.shape[1]
rot_dim = cos_sin_cache.shape[1]
embed_dim = rot_dim // 2

query_ref = query.copy()
key_ref = key.copy()

for t in range(num_tokens):
pos = position_ids[t]
cos_ptr = cos_sin_cache[pos, :embed_dim]
sin_ptr = cos_sin_cache[pos, embed_dim:]

for h in range(num_heads):
arr = query_ref[t, h]
for i in range(embed_dim):
if is_neox:
x_idx, y_idx = i, embed_dim + i
cos, sin = cos_ptr[i], sin_ptr[i]
else:
x_idx, y_idx = 2 * i, 2 * i + 1
cos, sin = cos_ptr[i], sin_ptr[i]
x, y = arr[x_idx], arr[y_idx]
arr[x_idx] = x * cos - y * sin
arr[y_idx] = y * cos + x * sin

for h in range(num_kv_heads):
arr = key_ref[t, h]
for i in range(embed_dim):
if is_neox:
x_idx, y_idx = i, embed_dim + i
cos, sin = cos_ptr[i], sin_ptr[i]
else:
x_idx, y_idx = 2 * i, 2 * i + 1
cos, sin = cos_ptr[i], sin_ptr[i]
x, y = arr[x_idx], arr[y_idx]
arr[x_idx] = x * cos - y * sin
arr[y_idx] = y * cos + x * sin

return query_ref, key_ref

def _run_op(
self,
query_np: np.ndarray,
key_np: np.ndarray,
position_ids_np: np.ndarray,
cos_sin_cache_np: np.ndarray,
head_size: int,
is_neox: bool,
):
"""Run fused_rotary_position_encoding operator."""
query = paddle.to_tensor(query_np, dtype="float32")
key = paddle.to_tensor(key_np, dtype="float32")
position_ids = paddle.to_tensor(position_ids_np, dtype="int32")
cos_sin_cache = paddle.to_tensor(cos_sin_cache_np, dtype="float32")

fused_rotary_position_encoding(query, key, position_ids, cos_sin_cache, head_size, is_neox)
return query.numpy(), key.numpy()

def _check_correctness(self, num_tokens, num_heads, num_kv_heads, head_size, rot_dim, is_neox):
query_np = np.random.rand(num_tokens, num_heads, head_size).astype("float32")
key_np = np.random.rand(num_tokens, num_kv_heads, head_size).astype("float32")
position_ids_np = np.arange(num_tokens, dtype="int32")
cos_sin_cache_np = self._make_cos_sin_cache(num_tokens, rot_dim)

query_out, key_out = self._run_op(query_np, key_np, position_ids_np, cos_sin_cache_np, head_size, is_neox)
query_ref, key_ref = self._ref_rotary(query_np, key_np, position_ids_np, cos_sin_cache_np, head_size, is_neox)

np.testing.assert_allclose(query_out, query_ref, rtol=1e-5, atol=1e-6)
np.testing.assert_allclose(key_out, key_ref, rtol=1e-5, atol=1e-6)

def test_basic_case(self):
self._check_correctness(num_tokens=4, num_heads=2, num_kv_heads=2, head_size=6, rot_dim=4, is_neox=False)

def test_neox_mode(self):
self._check_correctness(num_tokens=3, num_heads=2, num_kv_heads=2, head_size=8, rot_dim=8, is_neox=True)

def test_large_num_tokens(self):
self._check_correctness(num_tokens=10, num_heads=2, num_kv_heads=2, head_size=4, rot_dim=4, is_neox=False)

def test_exceed_max_tokens(self):
num_tokens, num_heads, head_size = 65537, 1, 4
num_kv_heads, rot_dim = 1, 4
query_np = np.random.rand(num_tokens, num_heads, head_size).astype("float32")
key_np = np.random.rand(num_tokens, num_kv_heads, head_size).astype("float32")
position_ids_np = np.arange(num_tokens, dtype="int32")
cos_sin_cache_np = self._make_cos_sin_cache(num_tokens, rot_dim)

with self.assertRaises(Exception):
self._run_op(query_np, key_np, position_ids_np, cos_sin_cache_np, head_size, is_neox=False)


if __name__ == "__main__":
unittest.main()
Loading