Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
105 changes: 105 additions & 0 deletions tests/operators/test_group_swiglu_with_masked.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import paddle
import paddle.nn.functional as F

from fastdeploy.model_executor.ops.gpu import group_swiglu_with_masked

paddle.seed(2024)


def group_swiglu_with_masked_paddle(fc1_out_tensor, token_nums_per_expert):
group_num, group_size, hidden_dim_x2 = fc1_out_tensor.shape

if token_nums_per_expert.dtype not in [paddle.int32, paddle.int64]:
raise ValueError(f"token_nums_per_expert must be int32 or int64, but receive {token_nums_per_expert.dtype}")

gate, up = paddle.chunk(fc1_out_tensor, chunks=2, axis=-1)

act_out = (F.silu(gate.to(paddle.float32)) * up.to(paddle.float32)).to(fc1_out_tensor.dtype)

# [0, 1, 2, ..., group_size-1]
range_tensor = paddle.arange(group_size, dtype=token_nums_per_expert.dtype)

mask = range_tensor < token_nums_per_expert.unsqueeze(1)

mask = mask.unsqueeze(-1)

output_tensor = act_out * mask.astype(act_out.dtype)

return output_tensor


class TestGroupSwigluWithMasked(unittest.TestCase):
def get_input(self):
self.token_nums_tensor = paddle.to_tensor([5, 8, 0, 3], dtype=self.token_nums_per_expert_dtype)
self.input_tensor = paddle.randn([self.group_num, self.group_size, self.hidden_dim * 2], dtype="bfloat16")

def setUp(self) -> None:
self.group_num = 4
self.group_size = 8
self.hidden_dim = 16 # fc1_out_tensor.shape()[2] / 2
self.input_dtype = paddle.bfloat16
self.token_nums_per_expert_dtype = paddle.int64
self.get_input()

def test_group_swiglu_with_masked(self):
paddle_output = group_swiglu_with_masked_paddle(self.input_tensor, self.token_nums_tensor)
output = group_swiglu_with_masked(self.input_tensor, self.token_nums_tensor)

valid_token_mask = paddle.arange(
self.group_size, dtype=self.token_nums_per_expert_dtype
) < self.token_nums_tensor.unsqueeze(1)

# Note(ooooo): Because GetEmptyTensor will random.
np.testing.assert_allclose(
paddle_output[valid_token_mask].astype("float32").numpy(),
output[valid_token_mask].astype("float32").numpy(),
)


class TestGroupSwigluWithMaskedCase1(TestGroupSwigluWithMasked):
def setUp(self) -> None:
self.group_num = 4
self.group_size = 8
self.hidden_dim = 16 # fc1_out_tensor.shape()[2] / 2
self.input_dtype = paddle.bfloat16
self.token_nums_per_expert_dtype = paddle.int32
self.get_input()


class TestGroupSwigluWithMaskedCase2(TestGroupSwigluWithMasked):
def setUp(self) -> None:
self.group_num = 4
self.group_size = 8
self.hidden_dim = 16 # fc1_out_tensor.shape()[2] / 2
self.input_dtype = paddle.bfloat16
self.token_nums_per_expert_dtype = paddle.int32
self.get_input()

def get_input(self):
self.token_nums_tensor = paddle.randint(
0, self.group_size + 1, shape=[self.group_num], dtype=self.token_nums_per_expert_dtype
)
self.input_tensor = paddle.randn(
[self.group_num, self.group_size, self.hidden_dim * 2], dtype=self.input_dtype
)


if __name__ == "__main__":
unittest.main()
Loading