Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
143 changes: 143 additions & 0 deletions tests/operators/test_speculate_get_padding_offset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import paddle

from fastdeploy.model_executor.ops.gpu import speculate_get_padding_offset


def ref_speculate_get_padding_offset(cum_offsets, seq_lens, max_seq_len, token_num_data):
bsz = seq_lens.shape[0]

padding_offset = np.zeros([token_num_data], dtype=np.int32)
batch_id_per_token = np.zeros([token_num_data], dtype=np.int32)
cum_offsets_out = np.zeros([bsz], dtype=np.int32)
cu_seqlens_q = np.zeros([bsz + 1], dtype=np.int32)
cu_seqlens_k = np.zeros([bsz + 1], dtype=np.int32)

modified_indices = {
"padding_offset": [],
"cum_offsets_out": [],
"cu_seqlens_q": [],
"cu_seqlens_k": [],
}

cu_seqlens_q[0] = 0
cu_seqlens_k[0] = 0
modified_indices["cu_seqlens_q"].append(0)
modified_indices["cu_seqlens_k"].append(0)

for bi in range(bsz):
cum_offset = 0 if bi == 0 else cum_offsets[bi - 1]
cum_offsets_out[bi] = cum_offset
modified_indices["cum_offsets_out"].append(bi)

for i in range(seq_lens[bi]):
idx = bi * max_seq_len - cum_offset + i
if idx >= 0 and idx < token_num_data:
if idx == 0:
print(idx, bi, cum_offset)
padding_offset[idx] = cum_offset
batch_id_per_token[idx] = bi
modified_indices["padding_offset"].append(idx)

cum_seq_len = (bi + 1) * max_seq_len - cum_offsets[bi]
cu_seqlens_q[bi + 1] = cum_seq_len
cu_seqlens_k[bi + 1] = cum_seq_len
modified_indices["cu_seqlens_q"].append(bi + 1)
modified_indices["cu_seqlens_k"].append(bi + 1)

return (
padding_offset,
cum_offsets_out,
cu_seqlens_q,
cu_seqlens_k,
modified_indices,
batch_id_per_token,
)


class TestSpeculateGetPaddingOffset(unittest.TestCase):
def test_speculate_get_padding_offset(self):
test_case = {
"bsz": 4,
"max_seq_len": 10,
"token_num_data": 32,
"cum_offsets": np.array([2, 5, 8, 12], dtype=np.int32),
"seq_lens": np.array([8, 5, 7, 6], dtype=np.int32),
"seq_lens_encoder": np.array([1, 0, 1, 0], dtype=np.int32),
}

max_draft_tokens = 4

input_ids = np.random.randint(0, 1000, (test_case["bsz"], test_case["max_seq_len"]), dtype=np.int64)
draft_tokens = np.random.randint(0, 1000, (test_case["bsz"], max_draft_tokens), dtype=np.int64)
token_num = np.array([test_case["token_num_data"]], dtype=np.int64)

input_ids_tensor = paddle.to_tensor(input_ids)
draft_tokens_tensor = paddle.to_tensor(draft_tokens)
cum_offsets_tensor = paddle.to_tensor(test_case["cum_offsets"])
seq_lens_tensor = paddle.to_tensor(test_case["seq_lens"])
seq_lens_encoder_tensor = paddle.to_tensor(test_case["seq_lens_encoder"])
token_num_tensor = paddle.to_tensor(token_num)

(
x_remove_padding,
batch_id_per_token,
cu_seqlens_q,
cu_seqlens_k,
) = speculate_get_padding_offset(
input_ids_tensor,
draft_tokens_tensor,
cum_offsets_tensor,
token_num_tensor,
seq_lens_tensor,
seq_lens_encoder_tensor,
)

(
ref_padding_offset,
ref_cum_offsets_out,
ref_cu_seqlens_q,
ref_cu_seqlens_k,
modified_indices,
ref_batch_id_per_token,
) = ref_speculate_get_padding_offset(
test_case["cum_offsets"],
test_case["seq_lens"],
test_case["max_seq_len"],
test_case["token_num_data"],
)

output_arrays = {
"batch_id_per_token": batch_id_per_token.numpy(),
"cu_seqlens_q": cu_seqlens_q.numpy(),
"cu_seqlens_k": cu_seqlens_k.numpy(),
}

ref_arrays = {
"batch_id_per_token": ref_batch_id_per_token,
"cu_seqlens_q": ref_cu_seqlens_q,
"cu_seqlens_k": ref_cu_seqlens_k,
}

for key in output_arrays:
np.testing.assert_allclose(output_arrays[key], ref_arrays[key])


if __name__ == "__main__":
unittest.main()
60 changes: 60 additions & 0 deletions tests/operators/test_speculate_get_seq_lens_output.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import paddle

from fastdeploy.model_executor.ops.gpu import speculate_get_seq_lens_output


class TestSpeculateGetSeqLensOutput(unittest.TestCase):

def run_seq_lens(self, input_values):
paddle.seed(42)
np.random.seed(42)
seq_lens_this_time = paddle.to_tensor(input_values[0], dtype="int32")
seq_lens_encoder = paddle.to_tensor(input_values[1], dtype="int32")
seq_lens_decoder = paddle.to_tensor(input_values[2], dtype="int32")
seq_lens_output = speculate_get_seq_lens_output(seq_lens_this_time, seq_lens_encoder, seq_lens_decoder)[0]
return seq_lens_output

def test_speculate_get_seq_lens_output1(self):
input_values = [[7], [0], [0]]
output_value = 7
result = self.run_seq_lens(input_values)
np.testing.assert_allclose(result.numpy(), output_value)

def test_speculate_get_seq_lens_output2(self):
input_values = [[7], [1], [0]]
output_value = 1
result = self.run_seq_lens(input_values)
np.testing.assert_allclose(result.numpy(), output_value)

def test_speculate_get_seq_lens_output3(self):
input_values = [[1], [1], [0]]
output_value = 1
result = self.run_seq_lens(input_values)
np.testing.assert_allclose(result.numpy(), output_value)

def test_speculate_get_seq_lens_output4(self):
input_values = [[0], [1], [0]]
output_value = 0
result = self.run_seq_lens(input_values)
np.testing.assert_allclose(result.numpy(), output_value)


if __name__ == "__main__":
unittest.main()
Loading