|
| 1 | +# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import unittest |
| 16 | + |
| 17 | +import paddle |
| 18 | + |
| 19 | +from fastdeploy.model_executor.ops.gpu import ngram_match |
| 20 | + |
| 21 | + |
| 22 | +class TestNgramMatchOp(unittest.TestCase): |
| 23 | + |
| 24 | + def setUp(self): |
| 25 | + paddle.set_device("cpu") |
| 26 | + |
| 27 | + def test_basic_match(self): |
| 28 | + """ |
| 29 | + Case 1: input_ids overlaps with pre_ids, and can extract draft tokens. |
| 30 | + """ |
| 31 | + batch_size = 1 |
| 32 | + seq_len = 6 |
| 33 | + |
| 34 | + # Input IDs |
| 35 | + input_ids = paddle.to_tensor([[10, 20, 30, 40, 50, 60]], dtype="int64") |
| 36 | + # Length of input IDs |
| 37 | + input_ids_len = paddle.to_tensor([6], dtype="int64") |
| 38 | + # Previous IDs |
| 39 | + pre_ids = paddle.to_tensor([[10, 20, 30, 40, 0, 0]], dtype="int64") |
| 40 | + # Current step index |
| 41 | + step_idx = paddle.to_tensor([3], dtype="int64") |
| 42 | + # Number of draft tokens |
| 43 | + draft_token_num = paddle.to_tensor([3], dtype="int32") |
| 44 | + # Placeholder for draft tokens |
| 45 | + draft_tokens = paddle.zeros([batch_size, seq_len], dtype="int64") |
| 46 | + |
| 47 | + # Sequence lengths for this time step |
| 48 | + seq_lens_this_time = paddle.zeros([batch_size], dtype="int32") |
| 49 | + # Sequence lengths for encoder |
| 50 | + seq_lens_encoder = paddle.zeros([batch_size], dtype="int32") |
| 51 | + # Sequence lengths for decoder |
| 52 | + seq_lens_decoder = paddle.ones([batch_size], dtype="int32") |
| 53 | + # Maximum decoding length |
| 54 | + max_dec_len = paddle.to_tensor([10], dtype="int64") |
| 55 | + |
| 56 | + ngram_match( |
| 57 | + input_ids, |
| 58 | + input_ids_len, |
| 59 | + pre_ids, |
| 60 | + step_idx, |
| 61 | + draft_token_num, |
| 62 | + draft_tokens, |
| 63 | + seq_lens_this_time, |
| 64 | + seq_lens_encoder, |
| 65 | + seq_lens_decoder, |
| 66 | + max_dec_len, |
| 67 | + 3, |
| 68 | + 4, |
| 69 | + ) |
| 70 | + |
| 71 | + # Extract non-zero tokens and assert the results. |
| 72 | + nonzero_tokens = draft_tokens.numpy()[0][draft_tokens.numpy()[0] != 0] |
| 73 | + expected_tokens = [50, 60] |
| 74 | + self.assertTrue((nonzero_tokens == expected_tokens).all()) |
| 75 | + |
| 76 | + # Check length |
| 77 | + self.assertEqual(seq_lens_this_time.numpy()[0], 3) |
| 78 | + |
| 79 | + def test_no_match(self): |
| 80 | + """ |
| 81 | + Case 2: pre_ids does not match input_ids, should only keep the current token. |
| 82 | + """ |
| 83 | + batch_size = 1 |
| 84 | + input_ids = paddle.to_tensor([[100, 200, 300, 400]], dtype="int64") |
| 85 | + input_ids_len = paddle.to_tensor([4], dtype="int64") |
| 86 | + pre_ids = paddle.to_tensor([[1, 2, 3, 4]], dtype="int64") |
| 87 | + step_idx = paddle.to_tensor([3], dtype="int64") |
| 88 | + draft_token_num = paddle.to_tensor([2], dtype="int32") |
| 89 | + draft_tokens = paddle.zeros([batch_size, 4], dtype="int64") |
| 90 | + |
| 91 | + seq_lens_this_time = paddle.zeros([batch_size], dtype="int32") |
| 92 | + seq_lens_encoder = paddle.zeros([batch_size], dtype="int32") |
| 93 | + seq_lens_decoder = paddle.ones([batch_size], dtype="int32") |
| 94 | + max_dec_len = paddle.to_tensor([6], dtype="int64") |
| 95 | + |
| 96 | + ngram_match( |
| 97 | + input_ids, |
| 98 | + input_ids_len, |
| 99 | + pre_ids, |
| 100 | + step_idx, |
| 101 | + draft_token_num, |
| 102 | + draft_tokens, |
| 103 | + seq_lens_this_time, |
| 104 | + seq_lens_encoder, |
| 105 | + seq_lens_decoder, |
| 106 | + max_dec_len, |
| 107 | + 3, |
| 108 | + 3, |
| 109 | + ) |
| 110 | + |
| 111 | + # No match → should only keep 1 token |
| 112 | + self.assertEqual(seq_lens_this_time.numpy()[0], 1) |
| 113 | + |
| 114 | + |
| 115 | +if __name__ == "__main__": |
| 116 | + unittest.main() |
0 commit comments