Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions tester/accuracy.py
Original file line number Diff line number Diff line change
Expand Up @@ -404,6 +404,7 @@ def test(self):
"paddle.diagonal_scatter",
"paddle.nn.functional.binary_cross_entropy",
"paddle.nn.functional.binary_cross_entropy_with_logits",
"paddle.nn.functional.sigmoid_focal_loss",
"paddle.nn.functional.gaussian_nll_loss",
"paddle.nn.functional.kl_div",
"paddle.scale",
Expand Down
61 changes: 61 additions & 0 deletions tester/api_config/5_accuracy/accuracy_gpu_error_grads_diff.txt
Original file line number Diff line number Diff line change
Expand Up @@ -15963,3 +15963,64 @@ paddle.cdist(Tensor([8550, 0],"float32"), Tensor([1, 0],"float32"), p=1, )
paddle.cdist(Tensor([8550, 4],"float32"), Tensor([0, 4],"float32"), p=1, )
paddle.cdist(Tensor([900, 0],"float32"), Tensor([1, 0],"float32"), p=1, )
paddle.cdist(Tensor([900, 4],"float32"), Tensor([0, 4],"float32"), p=1, )
paddle.nn.functional.sigmoid_focal_loss(Tensor([108, 4],"float32"), Tensor([108, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([11, 4],"float32"), Tensor([11, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([110484, 4],"float32"), Tensor([110484, 4],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([117, 4],"float32"), Tensor([117, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([1200, 4],"float32"), Tensor([1200, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([122760, 4],"float32"), Tensor([122760, 4],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([135036, 4],"float32"), Tensor([135036, 4],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([15488, 80],"float32"), label=Tensor([15488, 80],"float32"), normalizer=Tensor([],"float32"), gamma=2.0, alpha=0.25, )
paddle.nn.functional.sigmoid_focal_loss(Tensor([1620, 4],"float32"), Tensor([1620, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([1728, 4],"float32"), Tensor([1728, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([1800, 4],"float32"), Tensor([1800, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([190960, 80],"float32"), Tensor([190960, 80],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), None, alpha=0.25, gamma=0.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), None, alpha=0.25, gamma=0.0, reduction="sum", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), None, alpha=0.25, gamma=3, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), None, alpha=0.25, gamma=3, reduction="sum", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), None, alpha=0.5, gamma=0.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), None, alpha=0.5, gamma=0.0, reduction="sum", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), None, alpha=0.5, gamma=3, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), None, alpha=0.5, gamma=3, reduction="sum", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), Tensor([1],"float64"), alpha=0.25, gamma=0.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), Tensor([1],"float64"), alpha=0.25, gamma=0.0, reduction="sum", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), Tensor([1],"float64"), alpha=0.25, gamma=3, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), Tensor([1],"float64"), alpha=0.25, gamma=3, reduction="sum", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), Tensor([1],"float64"), alpha=0.5, gamma=0.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), Tensor([1],"float64"), alpha=0.5, gamma=3, reduction="mean", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), Tensor([1],"float64"), alpha=0.5, gamma=3, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), Tensor([1],"float64"), alpha=0.5, gamma=3, reduction="sum", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3],"float32"), Tensor([2, 3],"float32"), normalizer=Tensor([1],"float32"), reduction="sum", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3],"float32"), Tensor([2, 3],"float32"), normalizer=Tensor([],"float32"), reduction="sum", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([20, 4],"float32"), Tensor([20, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([210056, 80],"float32"), Tensor([210056, 80],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([218240, 80],"float32"), Tensor([218240, 80],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([240064, 80],"float32"), Tensor([240064, 80],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([245520, 80],"float32"), Tensor([245520, 80],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([270072, 80],"float32"), Tensor([270072, 80],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([272800, 80],"float32"), Tensor([272800, 80],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([27648, 4],"float32"), Tensor([27648, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([28800, 4],"float32"), Tensor([28800, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([30, 4],"float32"), Tensor([30, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([300, 4],"float32"), Tensor([300, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([300080, 80],"float32"), Tensor([300080, 80],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([330088, 80],"float32"), Tensor([330088, 80],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([35, 4],"float32"), Tensor([35, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([3872, 2],"float32"), label=Tensor([3872, 2],"float32"), normalizer=Tensor([],"float32"), gamma=2.0, alpha=0.25, )
paddle.nn.functional.sigmoid_focal_loss(Tensor([414, 4],"float32"), Tensor([414, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([432, 4],"float32"), Tensor([432, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([450, 4],"float32"), Tensor([450, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([4800, 4],"float32"), Tensor([4800, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([5, 2],"float32"), label=Tensor([5, 2],"float32"), normalizer=Tensor([1],"float32"), alpha=0.25, gamma=2.0, reduction="sum", name=None, )
paddle.nn.functional.sigmoid_focal_loss(Tensor([6380, 4],"float32"), Tensor([6380, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([6408, 4],"float32"), Tensor([6408, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([6912, 4],"float32"), Tensor([6912, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([7200, 4],"float32"), Tensor([7200, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([80, 4],"float32"), Tensor([80, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([8550, 4],"float32"), Tensor([8550, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([85932, 4],"float32"), Tensor([85932, 4],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([9, 4],"float32"), Tensor([9, 4],"float32"), alpha=0.25, gamma=2.0, reduction="none", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([95480, 4],"float32"), Tensor([95480, 4],"float32"), )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), Tensor([1],"float64"), alpha=0.5, gamma=0.0, reduction="sum", )
paddle.nn.functional.sigmoid_focal_loss(Tensor([2, 3, 4, 10],"float64"), Tensor([2, 3, 4, 10],"float64"), Tensor([1],"float64"), alpha=0.25, gamma=3, reduction="mean", )
4 changes: 4 additions & 0 deletions tester/api_config/config_analyzer.py
Original file line number Diff line number Diff line change
Expand Up @@ -1801,6 +1801,10 @@ def get_padding_offset(bsz, max_seq_len, seq_lens_this_time):
# self.check_arg(api_config, 1, "other"):
self.numpy_tensor = self.get_random_numpy_tensor(self.shape, self.dtype, min=-10, max=10)

elif api_config.api_name == "paddle.nn.functional.sigmoid_focal_loss":
if self.check_arg(api_config, 1, "label"):
self.numpy_tensor = numpy.random.randint(low=0, high=2, size=self.shape).astype(self.dtype)

if self.numpy_tensor is None:
if USE_CACHED_NUMPY and self.dtype not in ["int64", "float64"]:
self.numpy_tensor = self.get_cached_numpy(self.dtype, self.shape)
Expand Down
2 changes: 1 addition & 1 deletion tester/paddle_to_torch/rules.py
Original file line number Diff line number Diff line change
Expand Up @@ -5190,7 +5190,7 @@ def apply(self, paddle_api: str) -> ConvertResult:
normalizer = locals().get('normalizer', None)
alpha = locals().get('alpha', 0.25)
gamma = locals().get('gamma', 2.0)
reduction = locals().get('reduction', 'mean')
reduction = locals().get('reduction', 'sum')
prob = torch.sigmoid(logit)

pos_loss = -label * alpha * ((1 - prob) ** gamma) * torch.log(prob)
Expand Down