Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 0 additions & 3 deletions report/ci_ce_cpu/20250607/cpu_error/error_api.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,12 @@ paddle.Tensor.__mul__
paddle.Tensor.astype
paddle.Tensor.cast
paddle.Tensor.expand
paddle.Tensor.topk
paddle.add_n
paddle.broadcast_to
paddle.cast
paddle.cumulative_trapezoid
paddle.expand
paddle.geometric.send_ue_recv
paddle.geometric.send_uv
paddle.heaviside
paddle.incubate.nn.functional.fused_layer_norm
paddle.kron
paddle.linalg.cond
Expand Down
10 changes: 0 additions & 10 deletions report/ci_ce_cpu/20250607/cpu_error/error_config.txt
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,6 @@ paddle.Tensor.expand(Tensor([1, 50, 1, 1],"float16"), list[2,50,1,64,], )
paddle.Tensor.expand(Tensor([1, 51, 1, 1],"float16"), list[2,51,1,64,], )
paddle.Tensor.expand(Tensor([1, 52, 1, 1],"float16"), list[2,52,1,64,], )
paddle.Tensor.expand(Tensor([1, 57, 1, 1],"float16"), list[2,57,1,64,], )
paddle.Tensor.topk(Tensor([3276800],"float32"), 98148, )
paddle.Tensor.topk(Tensor([3276800],"float32"), 98760, )
paddle.add_n(list[Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),], )
paddle.add_n(list[Tensor([16, 256],"float32"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),Tensor([16, 256],"float16"),], )
paddle.broadcast_to(Tensor([1],"float16"), list[300,40,], )
Expand All @@ -38,24 +36,16 @@ paddle.cumulative_trapezoid(y=Tensor([2, 3],"float64"), x=None, dx=None, axis=-1
paddle.cumulative_trapezoid(y=Tensor([2, 3],"float64"), x=Tensor([2, 3],"float64"), dx=None, axis=-1, )
paddle.cumulative_trapezoid(y=Tensor([3, 3, 4],"float32"), x=Tensor([3],"float32"), dx=None, axis=1, )
paddle.expand(Tensor([3, 2],"float16"), shape=list[512,3,2,], )
paddle.geometric.send_ue_recv(Tensor([10, 20],"float64"), Tensor([15, 20],"float64"), Tensor([15],"int64"), Tensor([15],"int64"), "mul", "mean", None, None, )
paddle.geometric.send_ue_recv(Tensor([10, 20],"float64"), Tensor([150, 1],"float64"), Tensor([150],"int64"), Tensor([150],"int64"), "add", "max", None, None, )
paddle.geometric.send_ue_recv(Tensor([10, 20],"float64"), Tensor([150, 1],"float64"), Tensor([150],"int64"), Tensor([150],"int64"), "add", "mean", None, None, )
paddle.geometric.send_ue_recv(Tensor([10, 20],"float64"), Tensor([150, 1],"float64"), Tensor([150],"int64"), Tensor([150],"int64"), "add", "min", None, None, )
paddle.geometric.send_ue_recv(Tensor([10, 20],"float64"), Tensor([150, 1],"float64"), Tensor([150],"int64"), Tensor([150],"int64"), "add", "sum", None, None, )
paddle.geometric.send_ue_recv(Tensor([10, 20],"float64"), Tensor([150, 1],"float64"), Tensor([150],"int64"), Tensor([150],"int64"), "mul", "mean", None, None, )
paddle.geometric.send_ue_recv(Tensor([10, 20],"float64"), Tensor([150, 1],"float64"), Tensor([150],"int64"), Tensor([150],"int64"), "mul", "min", None, None, )
paddle.geometric.send_ue_recv(Tensor([10, 20],"float64"), Tensor([150, 1],"float64"), Tensor([150],"int64"), Tensor([150],"int64"), "mul", "sum", None, None, )
paddle.geometric.send_ue_recv(Tensor([10, 8, 5],"float64"), Tensor([15, 8, 1],"float64"), Tensor([15],"int64"), Tensor([15],"int64"), "add", "mean", None, None, )
paddle.geometric.send_ue_recv(Tensor([10, 8, 5],"float64"), Tensor([15, 8, 1],"float64"), Tensor([15],"int64"), Tensor([15],"int64"), "add", "sum", None, None, )
paddle.geometric.send_ue_recv(Tensor([10, 8, 5],"float64"), Tensor([15, 8, 1],"float64"), Tensor([15],"int64"), Tensor([15],"int64"), "mul", "min", None, None, )
paddle.geometric.send_ue_recv(Tensor([3, 3],"float32"), Tensor([4, 1],"float32"), Tensor([4],"int32"), Tensor([4],"int32"), "div", "sum", )
paddle.geometric.send_ue_recv(Tensor([3, 3],"float32"), Tensor([4, 1],"float32"), Tensor([4],"int32"), Tensor([4],"int32"), "sub", "mean", )
paddle.geometric.send_ue_recv(Tensor([3, 3],"float32"), Tensor([4, 1],"float32"), Tensor([4],"int32"), Tensor([4],"int32"), "sub", "sum", )
paddle.geometric.send_uv(Tensor([10, 10, 1],"float64"), Tensor([10, 10, 10],"float64"), Tensor([15],"int64"), Tensor([15],"int64"), "add", )
paddle.heaviside(Tensor([1],"float32"), Tensor([300, 2048],"float32"), )
paddle.heaviside(Tensor([2048],"float32"), Tensor([300, 2048],"float32"), )
paddle.heaviside(Tensor([],"float32"), Tensor([2, 3, 4],"float32"), )
paddle.incubate.nn.functional.fused_layer_norm(Tensor([16, 256],"float32"), Tensor([256],"float32"), Tensor([256],"float32"), 1e-05, begin_norm_axis=1, bias=Tensor([256],"float32"), residual=Tensor([16, 256],"float32"), residual_alpha=0.69204696, )
paddle.kron(Tensor([12, 8],"float16"), Tensor([16, 8],"float16"), )
paddle.kron(Tensor([16, 16],"float16"), Tensor([32, 20],"float16"), )
Expand Down
Loading