############################################################ GnuCash Cognitive Engine README
GnuCashCog transforms traditional double-entry bookkeeping into a distributed cognitive tensor network that learns, adapts, and evolves. This implementation creates a "living grammar of cognition" where financial data flows through specialized neural-symbolic nodes.
graph TD
subgraph "GnuCashCog Cognitive System"
A[Traditional Accounting] -->|Cognitive Transformation| B[Neural-Symbolic Engine]
B --> C[Distributed Tensor Network]
C --> D[Emergent Financial Intelligence]
subgraph "Core Components"
E[OpenCog Framework<br/>AtomSpace, PLN, ECAN, MOSES, URE]
F[Tensor Network<br/>Memory, Task, AI, Autonomy]
G[Cogfluence Clustering<br/>Pattern Recognition]
end
B --> E
B --> F
B --> G
end
subgraph "Capabilities"
H[Adaptive Learning]
I[Predictive Analytics]
J[Pattern Discovery]
K[Uncertainty Handling]
L[Attention Economics]
end
D --> H
D --> I
D --> J
D --> K
D --> L
- Memory Node: Stores transactions, clusters, and states as tensor data
- Task Node: Orchestrates workflow and triggers clustering operations
- AI Node: Financial pattern recognition with Cogfluence clustering
- Autonomy Node: Self-modification and attention allocation
- AtomSpace: Hypergraph knowledge representation
- PLN: Probabilistic Logic Networks for validation
- ECAN: Economic Attention Allocation
- MOSES: Meta-Optimizing Evolutionary Search
- URE: Uncertain Reasoning Engine
- Advanced financial pattern recognition
- Emergent economic insight discovery
- Adaptive clustering algorithms
- Real-time pattern detection
- ggml Integration: Optimized tensor operations
- Message Passing: Asynchronous inter-node communication
- Attention Economics: Dynamic resource allocation
- Distributed Processing: Scalable cognitive architecture
- ๐ง Cognitive Architecture Overview
- ๐ฏ Key Features
- ๐ Documentation
- ๐ง Dependencies
- ๐ Getting Started
- ๐๏ธ Building & Installing
- ๐ฅ๏ธ Supported Platforms
- ๐ฅ Downloads
- ๐ Getting Source with Git
- ๐จโ๐ป Developing GnuCashCog
- ๐ง Cognitive Accounting Framework - Neural-symbolic accounting system
- ๐ธ๏ธ Tensor Network Architecture - Distributed cognitive nodes
- ๐ Implementation Report - Technical implementation details
- ๐ Home Page: https://www.gnucash.org/
- ๐ Wiki: https://wiki.gnucash.org/wiki/GnuCash
- ๐พ Downloads: https://www.gnucash.org/download
graph LR
subgraph "Input Layer"
A[Financial Data] --> B[Transactions]
B --> C[Accounts]
C --> D[Balances]
end
subgraph "Cognitive Processing"
E[AtomSpace<br/>Hypergraph] --> F[PLN<br/>Validation]
F --> G[ECAN<br/>Attention]
G --> H[MOSES<br/>Evolution]
H --> I[URE<br/>Uncertainty]
end
subgraph "Tensor Network"
J[Memory Node] --> K[Task Node]
K --> L[AI Node]
L --> M[Autonomy Node]
end
subgraph "Output Layer"
N[Insights] --> O[Predictions]
O --> P[Adaptations]
P --> Q[Intelligence]
end
D --> E
I --> J
M --> N
Q --> A
- cmake: Build system (https://cmake.org)
- ninja: Fast build tool (https://ninja-build.org)
- glib: Foundation library for cognitive operations
- libxml2: XML processing for financial data
- SWIG: 2.0.10+ for language bindings (http://www.swig.org)
- OpenCog: Core cognitive framework components
atomspace
: Hypergraph knowledge representationcogutil
: Cognitive utilities and data structuresattention
: ECAN attention allocationpln
: Probabilistic Logic Networksmoses
: Meta-optimizing evolutionary searchure
: Uncertain reasoning engine
- ggml: High-performance tensor operations (optional)
- Cogfluence: Enhanced clustering algorithms
- Perl: For online stock/currency price retrieval
- Google Test: For comprehensive testing framework
- Valgrind: Memory debugging and profiling
Installation Notes:
- Run
gnc-fq-update
as root for latest financial quote modules - Windows: Use "Install Online Quotes" from Start menu
- macOS: Use "Update Finance Quote" from distribution disk image
Please see README.dependencies
for detailed build dependency information.
# Launch GnuCashCog
gnucash [filename]
# With cognitive features enabled
gnucash --enable-cognitive-accounting [filename]
# Run tensor network demo
./tensor-network-demo
# Test cognitive accounting
./test-cognitive-accounting.sh
GNC_BOOTSTRAP_SCM
: Location of initial bootstrapping scheme codeGUILE_LOAD_PATH
: Override for GnuCash scheme file loading pathGNC_MODULE_PATH
: Override for GnuCash module loading pathGNC_DEBUG
: Enable debugging output for early startupGNC_COGNITIVE_DEBUG
: Enable cognitive architecture debugging
*.gnucash
: GnuCash account files (Open File menu)*.qif
: Quicken Import Format files (Import QIF menu)doc/examples/
: Sample accounts and transactionscognitive-accounting-demo.cpp
: Cognitive features demonstration
GnuCashCog supports multiple languages through message catalogs. The system automatically uses your desktop environment's locale, but this can be overridden.
Override Locale Settings:
- Visit: https://wiki.gnucash.org/wiki/Locale_Settings
- Configure regional financial formatting
- Set cognitive reasoning language preferences
# Configure with cognitive features
cmake -B build -S . -DCMAKE_BUILD_TYPE=Release \
-DHAVE_COGNITIVE_ACCOUNTING=ON \
-DHAVE_GGML=ON \
-DHAVE_COGFLUENCE_CLUSTERING=ON
# Build with ninja (faster)
cmake --build build --parallel
# Install
cmake --install build
CMAKE_INSTALL_PREFIX
: Runtime installation directoryCMAKE_BUILD_TYPE
: Debug, Release, RelWithDebInfoHAVE_COGNITIVE_ACCOUNTING
: Enable cognitive featuresHAVE_GGML
: Enable tensor operationsHAVE_COGFLUENCE_CLUSTERING
: Enable advanced clustering
# Ubuntu/Debian
sudo apt-get install cmake ninja-build libglib2.0-dev libxml2-dev
# macOS
brew install cmake ninja glib libxml2
# Build OpenCog dependencies
git clone https://github.com/opencog/opencog
cd opencog && mkdir build && cd build
cmake .. && make -j4 && sudo make install
# Enable full cognitive stack
set(HAVE_COGNITIVE_ACCOUNTING ON)
set(HAVE_GGML ON)
set(HAVE_COGFLUENCE_CLUSTERING ON)
set(HAVE_OPENCOG_ATOMSPACE ON)
set(HAVE_OPENCOG_PLN ON)
set(HAVE_OPENCOG_ECAN ON)
set(HAVE_OPENCOG_MOSES ON)
set(HAVE_OPENCOG_URE ON)
# Stage installation for packaging
make DESTDIR=/tmp/staging install
# Creates staged directory structure under /tmp/staging
# Useful for creating distribution packages
Note: GNOME libraries are required but a GNOME desktop is not necessary.
Platform-Specific Instructions:
- GNU/Linux: https://wiki.gnucash.org/wiki/Building
- macOS: Set
GNOME_PATH
andGNOME_LIBCONFIG_PATH
if needed - Windows: Use MSYS2 or WSL for cognitive features
- GNU/Linux: x86_64, ARM64, with full cognitive features
- macOS: Intel/Apple Silicon, versions 10.15+
- FreeBSD: x86_64, with OpenCog support
- OpenBSD: x86_64, basic cognitive features
- OpenCog Integration: Linux, macOS, FreeBSD
- Tensor Operations: Platforms with ggml support
- Distributed Processing: All POSIX-compliant systems
- GPU Acceleration: CUDA/OpenCL capable systems (future)
- Tier 1: Full cognitive features + GPU acceleration
- Tier 2: Complete OpenCog integration + tensor operations
- Tier 3: Basic cognitive features + attention allocation
- Tier 4: Traditional accounting with minimal cognitive support
GnuCashCog can be ported to any platform supporting GTK+ and C++17 with sufficient expertise and effort. For platform-specific issues, join our development mailing list at [email protected]
.
- Source Code: https://github.com/OzCog/gnucashcog-v2
- Releases: https://github.com/OzCog/gnucashcog-v2/releases
- Original GnuCash: https://www.gnucash.org/download
- Ubuntu/Debian:
apt-get install gnucash-cognitive
- Fedora/RHEL:
dnf install gnucash-cognitive
- Arch Linux:
pacman -S gnucash-cognitive
- macOS:
brew install gnucash-cognitive
For the latest cognitive features, build from source using the instructions above. Distribution packages may lag behind the latest neural-symbolic innovations.
# Clone the cognitive engine repository
git clone https://github.com/OzCog/gnucashcog-v2.git
cd gnucashcog-v2
# Initialize submodules for cognitive dependencies
git submodule update --init --recursive
# Fork on GitHub first, then clone your fork
git clone https://github.com/YOUR_USERNAME/gnucashcog-v2.git
cd gnucashcog-v2
# Add upstream remote
git remote add upstream https://github.com/OzCog/gnucashcog-v2.git
# Create feature branch
git checkout -b feature/cognitive-enhancement
# Make changes, test, commit
git add .
git commit -m "Add: Neural-symbolic feature enhancement"
# Push and create pull request
git push origin feature/cognitive-enhancement
gnucashcog-v2/
โโโ libgnucash/engine/ # Core cognitive engine
โโโ gnucash/ # UI and reporting
โโโ doc/ # Documentation
โโโ COGNITIVE_ACCOUNTING.md # Neural-symbolic framework
โโโ TENSOR_NETWORK_ARCHITECTURE.md # Distributed processing
โโโ tensor-network-demo.cpp # Cognitive demonstrations
โโโ test-cognitive-accounting.sh # Integration tests
Before contributing to the cognitive engine, complete these steps:
-
๐ Read the Development Guide
-
๐ Review Documentation
- Doxygen: https://code.gnucash.org/docs/MASTER/
- Cognitive API: Browse
libgnucash/engine/gnc-cognitive-accounting.h
- Tensor Network API: Browse
libgnucash/engine/gnc-tensor-network.h
-
๐ฌ Join the Community
- Development mailing list:
[email protected]
- Cognitive architecture discussions: GitHub Issues
- OpenCog integration:
[email protected]
- Development mailing list:
-
๐จ Build and Test
# Build cognitive features cmake -B build -DHAVE_COGNITIVE_ACCOUNTING=ON cmake --build build # Run comprehensive tests make test-cognitive-accounting make test-tensor-network # Run demos ./tensor-network-demo ./cognitive-accounting-demo
- AtomSpace Integration: Hypergraph knowledge representation
- PLN Reasoning: Probabilistic logic for validation
- ECAN Attention: Economic attention allocation
- Tensor Networks: Distributed cognitive processing
- Cogfluence Clustering: Advanced pattern recognition
- Follow existing OpenCog conventions
- Use meaningful variable names reflecting cognitive concepts
- Document complex neural-symbolic algorithms
- Include comprehensive unit tests
- Unit Tests: Test individual cognitive components
- Integration Tests: Test OpenCog module interactions
- Performance Tests: Validate tensor operation efficiency
- Regression Tests: Ensure cognitive features don't break existing functionality
- ๐ Read: https://wiki.gnucash.org/wiki/Development#Submitting_Patches
- ๐ด Fork: Create a GitHub fork
- ๐ฟ Branch: Create feature branch from
stable
- ๐จ Develop: Implement cognitive enhancements
- โ Test: Ensure all tests pass
- ๐ Document: Update relevant documentation
- ๐ Submit: Create pull request with detailed description
- Neural-Symbolic Integration: Bridging symbolic and neural approaches
- Cognitive Economics: Attention allocation and resource management
- Pattern Recognition: Financial insight discovery
- Distributed Processing: Scalable cognitive architectures
- Uncertainty Reasoning: Handling incomplete financial information
- Emergent Behavior: Complex system properties arising from simple rules
- Cognitive Architectures: Multi-agent financial reasoning systems
- Hypergraph Patterns: Advanced knowledge representation
- Evolutionary Algorithms: Self-improving financial strategies
- OpenCog Community: Core cognitive architecture development
- GnuCash Community: Traditional accounting integration
- Academic Partnerships: Research collaboration opportunities
- Industry Integration: Real-world cognitive accounting applications
- Memory Management: Efficient tensor allocation
- Attention Economics: Dynamic resource allocation
- Message Passing: Optimized inter-node communication
- Parallel Processing: Multi-core cognitive operations
- GPU Acceleration: CUDA/OpenCL tensor operations
- Distributed Computing: Multi-node cognitive networks
- Real-time Processing: Streaming financial analysis
- Deep Learning: Neural network integration
- Quantum Computing: Quantum-enhanced reasoning (experimental)
Thank you for contributing to the evolution of cognitive accounting! ๐ง โจ
"Every contribution helps transmute classical ledgers into cognitive neural-symbolic tapestries, where financial meaning emerges from the recursive interplay of distributed intelligence."