-
Notifications
You must be signed in to change notification settings - Fork 1.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #5064 from martin-frbg/lapack1080
Replace LAPACK ?LARFT with a recursive implementation (Reference-LAPACK PR 1080)
- Loading branch information
Showing
10 changed files
with
3,109 additions
and
570 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,328 @@ | ||
*> \brief \b CLARFT VARIANT: left-looking Level 2 BLAS version of the algorithm | ||
* | ||
* =========== DOCUMENTATION =========== | ||
* | ||
* Online html documentation available at | ||
* http://www.netlib.org/lapack/explore-html/ | ||
* | ||
*> \htmlonly | ||
*> Download CLARFT + dependencies | ||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarft.f"> | ||
*> [TGZ]</a> | ||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarft.f"> | ||
*> [ZIP]</a> | ||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarft.f"> | ||
*> [TXT]</a> | ||
*> \endhtmlonly | ||
* | ||
* Definition: | ||
* =========== | ||
* | ||
* SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | ||
* | ||
* .. Scalar Arguments .. | ||
* CHARACTER DIRECT, STOREV | ||
* INTEGER K, LDT, LDV, N | ||
* .. | ||
* .. Array Arguments .. | ||
* COMPLEX T( LDT, * ), TAU( * ), V( LDV, * ) | ||
* .. | ||
* | ||
* | ||
*> \par Purpose: | ||
* ============= | ||
*> | ||
*> \verbatim | ||
*> | ||
*> CLARFT forms the triangular factor T of a complex block reflector H | ||
*> of order n, which is defined as a product of k elementary reflectors. | ||
*> | ||
*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; | ||
*> | ||
*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. | ||
*> | ||
*> If STOREV = 'C', the vector which defines the elementary reflector | ||
*> H(i) is stored in the i-th column of the array V, and | ||
*> | ||
*> H = I - V * T * V**H | ||
*> | ||
*> If STOREV = 'R', the vector which defines the elementary reflector | ||
*> H(i) is stored in the i-th row of the array V, and | ||
*> | ||
*> H = I - V**H * T * V | ||
*> \endverbatim | ||
* | ||
* Arguments: | ||
* ========== | ||
* | ||
*> \param[in] DIRECT | ||
*> \verbatim | ||
*> DIRECT is CHARACTER*1 | ||
*> Specifies the order in which the elementary reflectors are | ||
*> multiplied to form the block reflector: | ||
*> = 'F': H = H(1) H(2) . . . H(k) (Forward) | ||
*> = 'B': H = H(k) . . . H(2) H(1) (Backward) | ||
*> \endverbatim | ||
*> | ||
*> \param[in] STOREV | ||
*> \verbatim | ||
*> STOREV is CHARACTER*1 | ||
*> Specifies how the vectors which define the elementary | ||
*> reflectors are stored (see also Further Details): | ||
*> = 'C': columnwise | ||
*> = 'R': rowwise | ||
*> \endverbatim | ||
*> | ||
*> \param[in] N | ||
*> \verbatim | ||
*> N is INTEGER | ||
*> The order of the block reflector H. N >= 0. | ||
*> \endverbatim | ||
*> | ||
*> \param[in] K | ||
*> \verbatim | ||
*> K is INTEGER | ||
*> The order of the triangular factor T (= the number of | ||
*> elementary reflectors). K >= 1. | ||
*> \endverbatim | ||
*> | ||
*> \param[in] V | ||
*> \verbatim | ||
*> V is COMPLEX array, dimension | ||
*> (LDV,K) if STOREV = 'C' | ||
*> (LDV,N) if STOREV = 'R' | ||
*> The matrix V. See further details. | ||
*> \endverbatim | ||
*> | ||
*> \param[in] LDV | ||
*> \verbatim | ||
*> LDV is INTEGER | ||
*> The leading dimension of the array V. | ||
*> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. | ||
*> \endverbatim | ||
*> | ||
*> \param[in] TAU | ||
*> \verbatim | ||
*> TAU is COMPLEX array, dimension (K) | ||
*> TAU(i) must contain the scalar factor of the elementary | ||
*> reflector H(i). | ||
*> \endverbatim | ||
*> | ||
*> \param[out] T | ||
*> \verbatim | ||
*> T is COMPLEX array, dimension (LDT,K) | ||
*> The k by k triangular factor T of the block reflector. | ||
*> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is | ||
*> lower triangular. The rest of the array is not used. | ||
*> \endverbatim | ||
*> | ||
*> \param[in] LDT | ||
*> \verbatim | ||
*> LDT is INTEGER | ||
*> The leading dimension of the array T. LDT >= K. | ||
*> \endverbatim | ||
* | ||
* Authors: | ||
* ======== | ||
* | ||
*> \author Univ. of Tennessee | ||
*> \author Univ. of California Berkeley | ||
*> \author Univ. of Colorado Denver | ||
*> \author NAG Ltd. | ||
* | ||
*> \ingroup larft | ||
* | ||
*> \par Further Details: | ||
* ===================== | ||
*> | ||
*> \verbatim | ||
*> | ||
*> The shape of the matrix V and the storage of the vectors which define | ||
*> the H(i) is best illustrated by the following example with n = 5 and | ||
*> k = 3. The elements equal to 1 are not stored. | ||
*> | ||
*> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': | ||
*> | ||
*> V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) | ||
*> ( v1 1 ) ( 1 v2 v2 v2 ) | ||
*> ( v1 v2 1 ) ( 1 v3 v3 ) | ||
*> ( v1 v2 v3 ) | ||
*> ( v1 v2 v3 ) | ||
*> | ||
*> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': | ||
*> | ||
*> V = ( v1 v2 v3 ) V = ( v1 v1 1 ) | ||
*> ( v1 v2 v3 ) ( v2 v2 v2 1 ) | ||
*> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) | ||
*> ( 1 v3 ) | ||
*> ( 1 ) | ||
*> \endverbatim | ||
*> | ||
* ===================================================================== | ||
SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | ||
* | ||
* -- LAPACK auxiliary routine -- | ||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | ||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | ||
* | ||
* .. Scalar Arguments .. | ||
CHARACTER DIRECT, STOREV | ||
INTEGER K, LDT, LDV, N | ||
* .. | ||
* .. Array Arguments .. | ||
COMPLEX T( LDT, * ), TAU( * ), V( LDV, * ) | ||
* .. | ||
* | ||
* ===================================================================== | ||
* | ||
* .. Parameters .. | ||
COMPLEX ONE, ZERO | ||
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ), | ||
$ ZERO = ( 0.0E+0, 0.0E+0 ) ) | ||
* .. | ||
* .. Local Scalars .. | ||
INTEGER I, J, PREVLASTV, LASTV | ||
* .. | ||
* .. External Subroutines .. | ||
EXTERNAL CGEMM, CGEMV, CTRMV | ||
* .. | ||
* .. External Functions .. | ||
LOGICAL LSAME | ||
EXTERNAL LSAME | ||
* .. | ||
* .. Executable Statements .. | ||
* | ||
* Quick return if possible | ||
* | ||
IF( N.EQ.0 ) | ||
$ RETURN | ||
* | ||
IF( LSAME( DIRECT, 'F' ) ) THEN | ||
PREVLASTV = N | ||
DO I = 1, K | ||
PREVLASTV = MAX( PREVLASTV, I ) | ||
IF( TAU( I ).EQ.ZERO ) THEN | ||
* | ||
* H(i) = I | ||
* | ||
DO J = 1, I | ||
T( J, I ) = ZERO | ||
END DO | ||
ELSE | ||
* | ||
* general case | ||
* | ||
IF( LSAME( STOREV, 'C' ) ) THEN | ||
* Skip any trailing zeros. | ||
DO LASTV = N, I+1, -1 | ||
IF( V( LASTV, I ).NE.ZERO ) EXIT | ||
END DO | ||
DO J = 1, I-1 | ||
T( J, I ) = -TAU( I ) * CONJG( V( I , J ) ) | ||
END DO | ||
J = MIN( LASTV, PREVLASTV ) | ||
* | ||
* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i) | ||
* | ||
CALL CGEMV( 'Conjugate transpose', J-I, I-1, | ||
$ -TAU( I ), V( I+1, 1 ), LDV, | ||
$ V( I+1, I ), 1, | ||
$ ONE, T( 1, I ), 1 ) | ||
ELSE | ||
* Skip any trailing zeros. | ||
DO LASTV = N, I+1, -1 | ||
IF( V( I, LASTV ).NE.ZERO ) EXIT | ||
END DO | ||
DO J = 1, I-1 | ||
T( J, I ) = -TAU( I ) * V( J , I ) | ||
END DO | ||
J = MIN( LASTV, PREVLASTV ) | ||
* | ||
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H | ||
* | ||
CALL CGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ), | ||
$ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, | ||
$ ONE, T( 1, I ), LDT ) | ||
END IF | ||
* | ||
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | ||
* | ||
CALL CTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, | ||
$ T, | ||
$ LDT, T( 1, I ), 1 ) | ||
T( I, I ) = TAU( I ) | ||
IF( I.GT.1 ) THEN | ||
PREVLASTV = MAX( PREVLASTV, LASTV ) | ||
ELSE | ||
PREVLASTV = LASTV | ||
END IF | ||
END IF | ||
END DO | ||
ELSE | ||
PREVLASTV = 1 | ||
DO I = K, 1, -1 | ||
IF( TAU( I ).EQ.ZERO ) THEN | ||
* | ||
* H(i) = I | ||
* | ||
DO J = I, K | ||
T( J, I ) = ZERO | ||
END DO | ||
ELSE | ||
* | ||
* general case | ||
* | ||
IF( I.LT.K ) THEN | ||
IF( LSAME( STOREV, 'C' ) ) THEN | ||
* Skip any leading zeros. | ||
DO LASTV = 1, I-1 | ||
IF( V( LASTV, I ).NE.ZERO ) EXIT | ||
END DO | ||
DO J = I+1, K | ||
T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) ) | ||
END DO | ||
J = MAX( LASTV, PREVLASTV ) | ||
* | ||
* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i) | ||
* | ||
CALL CGEMV( 'Conjugate transpose', N-K+I-J, K-I, | ||
$ -TAU( I ), V( J, I+1 ), LDV, V( J, I ), | ||
$ 1, ONE, T( I+1, I ), 1 ) | ||
ELSE | ||
* Skip any leading zeros. | ||
DO LASTV = 1, I-1 | ||
IF( V( I, LASTV ).NE.ZERO ) EXIT | ||
END DO | ||
DO J = I+1, K | ||
T( J, I ) = -TAU( I ) * V( J, N-K+I ) | ||
END DO | ||
J = MAX( LASTV, PREVLASTV ) | ||
* | ||
* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H | ||
* | ||
CALL CGEMM( 'N', 'C', K-I, 1, N-K+I-J, | ||
$ -TAU( I ), | ||
$ V( I+1, J ), LDV, V( I, J ), LDV, | ||
$ ONE, T( I+1, I ), LDT ) | ||
END IF | ||
* | ||
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | ||
* | ||
CALL CTRMV( 'Lower', 'No transpose', 'Non-unit', | ||
$ K-I, | ||
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | ||
IF( I.GT.1 ) THEN | ||
PREVLASTV = MIN( PREVLASTV, LASTV ) | ||
ELSE | ||
PREVLASTV = LASTV | ||
END IF | ||
END IF | ||
T( I, I ) = TAU( I ) | ||
END IF | ||
END DO | ||
END IF | ||
RETURN | ||
* | ||
* End of CLARFT | ||
* | ||
END |
Oops, something went wrong.