Overview • Documentation • Installation • Quick Start • Supported Models • 简体ä¸ć–‡
- 2023/06/13 ModelCenter 1.0.3 ModelCenter supports T5's beam search generation.
- 2023/05/28 ModelCenter 1.0.2 ModelCenter supports LLaMA and its generation.
- 2023/02/28 ModelCenter 1.0.1 ModelCenter supports FLAN-T5 (fp32) version.
- 2022/11/21 ModelCenter 1.0.0 ModelCenter supports BMTrain>=0.2.0.
- 2022/07/14 ModelCenter 0.1.5 ModelCenter supports Mengzi, GLM, Longformer, and KV_PLM.
- 2022/07/05 ModelCenter 0.1.3 ModelCenter supports mT5, T5v1.1, ViT, and Wenzhong.
- 2022/04/27 ModelCenter 0.1.1 ModelCenter supports RoBERTa.
- 2022/04/06 ModelCenter 0.1.0 ModelCenter has publicly released the first stable version, which fixes some bugs in model performance and GPU memory usage.
- 2022/03/21 ModelCenter 0.0.1-beta ModelCenter has publicly released the first beta version.
ModelCenter implements pre-trained language models (PLMs) based on the backend OpenBMB/BMTrain. ModelCenter supports Efficient, Low-Resource, Extendable model usage and distributed training.
Our main advantages are:
- Easy to use. Compared to Deepspeed and Megatron, we have better and more flexible code-packaging and easy to configure python environments, and the training code is uniform with PyTorch style.
- More efficient memory utilization. Models with large memory footprints can cause OOM (out of memory) before the computational power of the GPU is fully utilized. Our implementation reduces the memory footprint by several times, allowing more efficient use of the GPU's computational power with a larger batch size.
- Efficient distributed training with low resources. With the support of OpenBMB/BMTrain, we are able to easily extend the ZeRO optimization to any PLMs, and we optimize communication and time scheduling for faster distributed training.
Our documentation provides more information about the package.
$ pip install model-center
$ git clone https://github.com/OpenBMB/ModelCenter.git
$ cd ModelCenter
$ pip install -r requirements.txt
$ python3 setup.py install
In the quick start, you will walk through how to fine-tune a BERT model on a classification task.
First, you need to import bmtrain
and use bmtrain.init_distributed()
at the beginning of your code, which can initialize the distributed environments.
import bmtrain as bmt
bmt.init_distributed(seed=0)
Next, you can simply get a pre-trained BERT model from model_center
, e.g., bert-base-uncased. When fine-tuning BERT on the classification task, a feed-forward layer need to be appended to the last layer.
import torch
from model_center.model import Bert, BertConfig
from model_center.layer import Linear
class BertModel(torch.nn.Module):
def __init__(self, config):
super().__init__()
self.bert = Bert.from_pretrained("bert-base-uncased")
self.dense = Linear(config.dim_model, 2)
bmt.init_parameters(self.dense)
def forward(self, input_ids, attention_mask):
pooler_output = self.bert(input_ids=input_ids, attention_mask=attention_mask).pooler_output
logits = self.dense(pooler_output)
return logits
config = BertConfig.from_pretrained("bert-base-uncased")
model = BertModel(config)
If only config is needed instead of pretrained checkpoint, you can initialize a model as the following:
config = BertConfig.from_json_file("your/path/to/config.json")
model = Bert(config)
bmt.init_parameters(model)
# bmt.load(model, "your/path/to/pytorch_model.pt")
The next step is to prepare the dataset used for training and evaluation. Here, we use the BoolQ dataset from the SuperGLUE benchmark. You need to download the dataset and put the unzipped folder in your_path_to_dataset
.
from model_center.dataset.bertdataset import DATASET
from model_center.dataset import DistributedDataLoader
from model_center.tokenizer import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
splits = ['train', 'dev']
dataset = {}
for split in splits:
dataset[split] = DATASET['BoolQ']('your_path_to_dataset', split, bmt.rank(), bmt.world_size(), tokenizer, max_encoder_length=512)
batch_size = 64
train_dataloader = DistributedDataLoader(dataset['train'], batch_size=batch_size, shuffle=True)
dev_dataloader = DistributedDataLoader(dataset['dev'], batch_size=batch_size, shuffle=False)
Now, select optimizer, learning rate scheduler, loss function, and then start training the model! Here, we train BERT for 5 epochs and evaluate it at the end of each epoch.
optimizer = bmt.optim.AdamOffloadOptimizer(model.parameters())
lr_scheduler = bmt.lr_scheduler.Noam(
optimizer,
start_lr = 1e-5,
warmup_iter = 100,
end_iter = -1)
loss_func = bmt.loss.FusedCrossEntropy(ignore_index=-100)
optim_manager = bmt.optim.OptimManager(loss_scale=1024)
optim_manager.add_optimizer(optimizer, lr_scheduler)
for epoch in range(5):
model.train()
for data in train_dataloader:
input_ids = data['input_ids']
attention_mask = data['attention_mask']
labels = data['labels']
# model forward
logits = model(input_ids, attention_mask)
# calculate loss
loss = loss_func(logits.view(-1, logits.shape[-1]), labels.view(-1))
# use bmt.sum_loss(loss) to gather all loss information from all distributed processes
global_loss = bmt.sum_loss(loss).item()
# zero grad
optim_manager.zero_grad()
# scale loss before backward to avoid precision underflow of fp16
optim_manager.backward(loss)
# clip gradient norm
grad_norm = optim_manager.clip_grad_norm(optimizer.param_groups, max_norm=10.0, scale = optimizer.scale, norm_type = 2)
# step for all optimizer inside optim_manager
optim_manager.step()
# print information only on rank 0 when distributed training
bmt.print_rank(
"loss: {:.4f} | lr: {:.4e}, scale: {:10.4f} | grad_norm: {:.4f} |".format(
global_loss,
lr_scheduler.current_lr,
int(optimizer.scale),
grad_norm,
)
)
# evaluate model
model.eval()
with torch.no_grad():
pd = [] # prediction
gt = [] # ground_truth
for data in dev_dataloader:
input_ids = data["input_ids"]
attention_mask = data["attention_mask"]
labels = data["labels"]
logits = model(input_ids, attention_mask)
loss = loss_func(logits.view(-1, logits.shape[-1]), labels.view(-1))
logits = logits.argmax(dim=-1)
pd.extend(logits.cpu().tolist())
gt.extend(labels.cpu().tolist())
# gather results from all distributed processes
pd = bmt.gather_result(torch.tensor(pd).int()).cpu().tolist()
gt = bmt.gather_result(torch.tensor(gt).int()).cpu().tolist()
# calculate metric
from sklearn.metrics import accuracy_score
acc = accuracy_score(gt, pd)
bmt.print_rank(f"accuracy: {acc*100:.2f}")
You can run the above code using the same launch command as the distributed module of PyTorch.
Choose one of the following commands depending on your version of PyTorch.
${MASTER_ADDR}
means the IP address of the master node.${MASTER_PORT}
means the port of the master node.${NNODES}
means the total number of nodes.${GPU_PER_NODE}
means the number of GPUs per node.${NODE_RANK}
means the rank of this node.
$ python3 -m torch.distributed.launch --master_addr ${MASTER_ADDR} \
--master_port ${MASTER_PORT} \
--nproc_per_node ${GPU_PER_NODE} \
--nnodes ${NNODES} \
--node_rank ${NODE_RANK} \
train.py
$ torchrun --nnodes=${NNODES} \
--nproc_per_node=${GPU_PER_NODE} \
--rdzv_id=1 \
--rdzv_backend=c10d \
--rdzv_endpoint=${MASTER_ADDR}:${MASTER_PORT} \
train.py
More information can be found from the documentation.
-
CPM-1[paper]. We currently support loading the following checkpoint via
CPM1.from_pretrained(identifier)
as follows,- cpm1-large
-
CPM-2[paper]. We currently support loading the following checkpoint via
CPM2.from_pretrained(identifier)
as follows,- cpm2-large
-
BERT[paper]. We currently support loading the following checkpoint via
Bert.from_pretrained(identifier)
as follows,- bert-base-cased
- bert-base-uncased
- bert-large-cased
- bert-large-uncased
- bert-base-chinese
- bert-base-multilingual-cased
- kv-plm
-
RoBERTa[paper]. We currently support loading the following checkpoint via
Roberta.from_pretrained(identifier)
of the following:- roberta-base
- roberta-large
-
T5[paper]. We currently support loading the following checkpoint via
T5.from_pretrained(identifier)
of the following:- t5-small
- t5-base
- t5-large
- t5-3b
- t5-11b
- t5-v1_1-small
- t5-v1_1-base
- t5-v1_1-large
- t5-v1_1-xl
- t5-v1_1-xxl
- mt5-small
- mt5-base
- mt5-large
- mt5-xl
- mt5-xxl
- mengzi-t5-base
- flan-t5-small
- flan-t5-base
- flan-t5-large
- flan-t5-xl
- flan-t5-xxl
-
GPT-2[paper]. We currently support loading the following checkpoint via
GPT2.from_pretrained(identifier)
of the following:- gpt2-base
- gpt2-medium
- gpt2-large
- gpt2-xl
- wenzhong-gpt2-3.5b
-
GPT-J[paper]. We currently support loading the following checkpoint via
GPTj.from_pretrained(identifier)
of the following:- gptj-6b
-
Longformer[paper]. we currently support loading the following checkpoint via
Longformer.from_pretrained(identifier)
of the following:- lawformer
-
GLM[paper]. we currently support loading the following checkpoint via
GLM.from_pretrained(identifier)
of the following:- glm-10b-zh
-
ViT[paper]. we currently support loading the following checkpoint via
ViT.from_pretrained(identifier)
of the following:- vit-base-patch16-224
-
LLaMA[paper]. convert checkpoint via
transfer/hugLLaMa_bmtrainLLaMa.py
.
You can find more performance metrics in the repo OpenBMB/BMTrain.
We welcome everyone to contribute codes following our contributing guidelines.
You can also find us on other platforms:
- QQ Group: 735930538
- Website: https://www.openbmb.org
- Weibo: http://weibo.cn/OpenBMB
- Twitter: https://twitter.com/OpenBMB
The package is released under the Apache 2.0 License.