-
-
Notifications
You must be signed in to change notification settings - Fork 255
Agentic rag #2432
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
arkid15r
merged 8 commits into
OWASP:feature/nestbot-ai-assistant
from
Dishant1804:agentic-rag
Oct 22, 2025
Merged
Agentic rag #2432
Changes from all commits
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
f669f57
agentic rag
Dishant1804 c037f1e
spelling fixes
Dishant1804 49c829f
code rabbit and sonar qube suggestions
Dishant1804 5ca3138
code rabbit suggestions
Dishant1804 331f022
refining
Dishant1804 59850f0
fix test
Dishant1804 4de76fd
refining
Dishant1804 a8b0ab7
Merge branch 'feature/nestbot-ai-assistant' into agentic-rag
arkid15r File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Some comments aren't visible on the classic Files Changed page.
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,70 @@ | ||
| """LangGraph-powered agent for iterative RAG answering.""" | ||
|
|
||
| from __future__ import annotations | ||
|
|
||
| import logging | ||
| from typing import Any | ||
|
|
||
| from langgraph.graph import END, START, StateGraph | ||
|
|
||
| from apps.ai.agent.nodes import AgentNodes | ||
| from apps.ai.common.constants import ( | ||
| DEFAULT_CHUNKS_RETRIEVAL_LIMIT, | ||
| DEFAULT_SIMILARITY_THRESHOLD, | ||
| ) | ||
|
|
||
| logger = logging.getLogger(__name__) | ||
|
|
||
|
|
||
| class AgenticRAGAgent: | ||
| """LangGraph-based controller for agentic RAG with self-correcting retrieval.""" | ||
|
|
||
| def __init__(self) -> None: | ||
| """Initialize the AgenticRAGAgent.""" | ||
| self.nodes = AgentNodes() | ||
| self.graph = self.build_graph() | ||
|
|
||
| def run( | ||
| self, | ||
| query: str, | ||
| ) -> dict[str, Any]: | ||
| """Execute the full RAG loop.""" | ||
| initial_state: dict[str, Any] = { | ||
| "query": query, | ||
| "iteration": 0, | ||
| "feedback": None, | ||
| "history": [], | ||
| "content_types": [], | ||
| "limit": DEFAULT_CHUNKS_RETRIEVAL_LIMIT, | ||
| "similarity_threshold": DEFAULT_SIMILARITY_THRESHOLD, | ||
| } | ||
|
|
||
| logger.info("Starting Agentic RAG workflow with metadata-aware retrieval") | ||
| final_state = self.graph.invoke(initial_state) | ||
|
|
||
| return { | ||
| "answer": final_state.get("answer", ""), | ||
| "iterations": final_state.get("iteration", 0), | ||
| "evaluation": final_state.get("evaluation", {}), | ||
| "context_chunks": final_state.get("context_chunks", []), | ||
| "history": final_state.get("history", []), | ||
| "extracted_metadata": final_state.get("extracted_metadata", {}), | ||
| } | ||
|
|
||
| def build_graph(self): | ||
| """Build the LangGraph state machine for the RAG workflow.""" | ||
| graph = StateGraph(dict) | ||
| graph.add_node("retrieve", self.nodes.retrieve) | ||
| graph.add_node("generate", self.nodes.generate) | ||
| graph.add_node("evaluate", self.nodes.evaluate) | ||
|
|
||
| graph.add_edge(START, "retrieve") | ||
| graph.add_edge("retrieve", "generate") | ||
| graph.add_edge("generate", "evaluate") | ||
| graph.add_conditional_edges( | ||
| "evaluate", | ||
| self.nodes.route_from_evaluation, | ||
| {"refine": "generate", "complete": END}, | ||
| ) | ||
|
|
||
| return graph.compile() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,260 @@ | ||
| """LangGraph nodes for the Agentic RAG workflow.""" | ||
|
|
||
| from __future__ import annotations | ||
|
|
||
| import json | ||
| import os | ||
| from typing import Any | ||
|
|
||
| import openai | ||
| from django.core.exceptions import ObjectDoesNotExist | ||
|
|
||
| from apps.ai.agent.tools.rag.generator import Generator | ||
| from apps.ai.agent.tools.rag.retriever import Retriever | ||
| from apps.ai.common.constants import ( | ||
| DEFAULT_CHUNKS_RETRIEVAL_LIMIT, | ||
| DEFAULT_MAX_ITERATIONS, | ||
| DEFAULT_REASONING_MODEL, | ||
| DEFAULT_SIMILARITY_THRESHOLD, | ||
| ) | ||
| from apps.ai.common.utils import extract_json_from_markdown | ||
| from apps.core.models.prompt import Prompt | ||
|
|
||
|
|
||
| class AgentNodes: | ||
| """Collection of LangGraph node functions with injected dependencies.""" | ||
|
|
||
| def __init__(self) -> None: | ||
| """Initialize AgentNodes.""" | ||
| if not (openai_api_key := os.getenv("DJANGO_OPEN_AI_SECRET_KEY")): | ||
| error_msg = "DJANGO_OPEN_AI_SECRET_KEY environment variable not set" | ||
| raise ValueError(error_msg) | ||
|
|
||
| self.openai_client = openai.OpenAI(api_key=openai_api_key) | ||
|
|
||
| self.retriever = Retriever() | ||
| self.generator = Generator() | ||
|
|
||
| def retrieve(self, state: dict[str, Any]) -> dict[str, Any]: | ||
| """Retrieve context chunks based on the query.""" | ||
| if state.get("context_chunks"): | ||
| return state | ||
|
|
||
| limit = state.get("limit", DEFAULT_CHUNKS_RETRIEVAL_LIMIT) | ||
| threshold = state.get("similarity_threshold", DEFAULT_SIMILARITY_THRESHOLD) | ||
| query = state["query"] | ||
|
|
||
| if "extracted_metadata" not in state: | ||
| state["extracted_metadata"] = self.extract_query_metadata(query) | ||
|
|
||
| metadata = state["extracted_metadata"] | ||
|
|
||
| chunks = self.retriever.retrieve( | ||
| query=query, | ||
| limit=limit, | ||
| similarity_threshold=threshold, | ||
| content_types=metadata.get("entity_types"), | ||
| ) | ||
|
|
||
| filtered_chunks = self.filter_chunks_by_metadata(chunks, metadata, limit) | ||
|
|
||
| state["context_chunks"] = filtered_chunks[:limit] | ||
| return state | ||
|
|
||
| def generate(self, state: dict[str, Any]) -> dict[str, Any]: | ||
| """Generate an answer using the retrieved context.""" | ||
| iteration = state.get("iteration", 0) + 1 | ||
| feedback = state.get("feedback") | ||
| query = state["query"] | ||
| augmented_query = query if not feedback else f"{query}\n\nRevise per feedback:\n{feedback}" | ||
|
|
||
| answer = self.generator.generate_answer( | ||
| query=augmented_query, | ||
| context_chunks=state.get("context_chunks", []), | ||
| ) | ||
|
|
||
| history = state.get("history", []) | ||
| history.append( | ||
| { | ||
| "iteration": iteration, | ||
| "feedback": feedback, | ||
| "query": augmented_query, | ||
| "answer": answer, | ||
| } | ||
| ) | ||
|
|
||
| state.update( | ||
| {"answer": answer, "iteration": iteration, "history": history, "feedback": None} | ||
| ) | ||
| return state | ||
|
|
||
| def evaluate(self, state: dict[str, Any]) -> dict[str, Any]: | ||
| """Evaluate the generated answer and decide on the next step.""" | ||
| answer = state.get("answer", "") | ||
| evaluation = self.call_evaluator( | ||
| query=state["query"], | ||
| answer=answer, | ||
| context_chunks=state.get("context_chunks", []), | ||
| ) | ||
|
|
||
| history = state.get("history", []) | ||
| if history: | ||
| history[-1]["evaluation"] = evaluation | ||
|
|
||
| if evaluation.get("requires_more_context", False): | ||
| limit = min(state.get("limit", DEFAULT_CHUNKS_RETRIEVAL_LIMIT) * 2, 64) | ||
| threshold = state.get("similarity_threshold", DEFAULT_SIMILARITY_THRESHOLD) * 0.95 | ||
|
|
||
| metadata = state.get("extracted_metadata", {}) | ||
|
|
||
| new_chunks = self.retriever.retrieve( | ||
| query=state["query"], | ||
| limit=limit, | ||
| similarity_threshold=threshold, | ||
| content_types=metadata.get("entity_types"), | ||
| ) | ||
|
|
||
| filtered_chunks = self.filter_chunks_by_metadata(new_chunks, metadata, limit) | ||
| state["context_chunks"] = filtered_chunks[:limit] | ||
|
|
||
| state["feedback"] = "Expand and refine answer using newly retrieved context." | ||
| else: | ||
| state["feedback"] = evaluation.get("feedback") or None | ||
|
|
||
| state.update({"evaluation": evaluation, "history": history}) | ||
| return state | ||
|
|
||
| def route_from_evaluation(self, state: dict[str, Any]) -> str: | ||
| """Route the workflow based on the evaluation result.""" | ||
| evaluation = state.get("evaluation") or {} | ||
| iteration = state.get("iteration", 0) | ||
| if evaluation.get("complete") or iteration >= DEFAULT_MAX_ITERATIONS: | ||
| return "complete" | ||
| return "refine" | ||
|
|
||
| def filter_chunks_by_metadata( | ||
| self, | ||
| retrieved_chunks: list[dict[str, Any]], | ||
| query_metadata: dict[str, Any], | ||
| limit: int, | ||
| ) -> list[dict[str, Any]]: | ||
| """Rank and filter retrieved chunks using metadata and simple heuristics.""" | ||
| if not retrieved_chunks: | ||
| return [] | ||
|
|
||
| requested_fields = query_metadata.get("requested_fields", []) | ||
| query_filters = query_metadata.get("filters", {}) | ||
|
|
||
| if not requested_fields and not query_filters: | ||
| return retrieved_chunks | ||
|
|
||
| ranked_chunks: list[tuple[dict[str, Any], float]] = [] | ||
| for chunk in retrieved_chunks: | ||
| relevance_score = 0.0 | ||
| chunk_metadata = chunk.get("additional_context", {}) | ||
| chunk_content = chunk.get("text", "").lower() | ||
|
|
||
| for field_name in requested_fields: | ||
| if chunk_metadata.get(field_name): | ||
| relevance_score += 2 | ||
|
|
||
| for filter_field, filter_value in query_filters.items(): | ||
| if filter_field in chunk_metadata: | ||
| metadata_value = chunk_metadata[filter_field] | ||
|
|
||
| if isinstance(metadata_value, str) and isinstance(filter_value, str): | ||
| if filter_value.lower() in metadata_value.lower(): | ||
| relevance_score += 5 | ||
|
|
||
| elif isinstance(metadata_value, list): | ||
| if any( | ||
| filter_value.lower() in str(item).lower() for item in metadata_value | ||
| ): | ||
| relevance_score += 5 | ||
|
|
||
| elif metadata_value == filter_value: | ||
| relevance_score += 5 | ||
|
|
||
| if isinstance(filter_value, str) and filter_value.lower() in chunk_content: | ||
| relevance_score += 3 | ||
|
|
||
| if chunk_metadata: | ||
| relevance_score += len(chunk_metadata) * 0.1 | ||
|
|
||
| ranked_chunks.append((chunk, relevance_score)) | ||
|
|
||
| ranked_chunks.sort( | ||
| key=lambda entry: (entry[1], entry[0].get("similarity", 0)), reverse=True | ||
| ) | ||
|
|
||
| return [chunk for chunk, _ in ranked_chunks[:limit]] | ||
|
|
||
| def extract_query_metadata(self, query: str) -> dict[str, Any]: | ||
| """Extract metadata from the user's query using an LLM.""" | ||
| metadata_extractor_prompt = Prompt.get_metadata_extractor_prompt() | ||
|
|
||
| if not metadata_extractor_prompt: | ||
| error_msg = "Prompt with key 'metadata-extractor-prompt' not found." | ||
| raise ObjectDoesNotExist(error_msg) | ||
|
|
||
| try: | ||
| response = self.openai_client.chat.completions.create( | ||
| model=DEFAULT_REASONING_MODEL, | ||
| messages=[ | ||
| {"role": "system", "content": metadata_extractor_prompt}, | ||
| {"role": "user", "content": f"Query: {query}"}, | ||
| ], | ||
| max_tokens=500, | ||
| temperature=0.7, | ||
| ) | ||
| content = response.choices[0].message.content.strip() | ||
| content = extract_json_from_markdown(content) | ||
| return json.loads(content) | ||
|
|
||
| except openai.OpenAIError: | ||
| return { | ||
| "requested_fields": [], | ||
| "entity_types": [], | ||
| "filters": {}, | ||
| "intent": "general query", | ||
| } | ||
|
|
||
| def call_evaluator( | ||
| self, *, query: str, answer: str, context_chunks: list[dict[str, Any]] | ||
| ) -> dict[str, Any]: | ||
| """Call the evaluator LLM to assess the quality of the generated answer.""" | ||
| formatted_context = self.generator.prepare_context(context_chunks) | ||
| evaluation_prompt = ( | ||
| f"User Query:\n{query}\n\n" | ||
| f"Candidate Answer:\n{answer}\n\n" | ||
| f"Context Provided:\n{formatted_context}\n\n" | ||
| "Respond with the mandated JSON object." | ||
| ) | ||
|
|
||
| evaluator_system_prompt = Prompt.get_evaluator_system_prompt() | ||
|
|
||
| if not evaluator_system_prompt: | ||
| error_msg = "Prompt with key 'evaluator-system-prompt' not found." | ||
| raise ObjectDoesNotExist(error_msg) | ||
|
|
||
| try: | ||
| response = self.openai_client.chat.completions.create( | ||
| model=DEFAULT_REASONING_MODEL, | ||
| messages=[ | ||
| {"role": "system", "content": evaluator_system_prompt}, | ||
| {"role": "user", "content": evaluation_prompt}, | ||
| ], | ||
| max_tokens=2000, | ||
| temperature=0.7, | ||
| ) | ||
| content = response.choices[0].message.content.strip() | ||
| content = extract_json_from_markdown(content) | ||
| return json.loads(content) | ||
|
|
||
| except openai.OpenAIError: | ||
| return { | ||
| "complete": False, | ||
| "feedback": "Evaluator error or invalid response.", | ||
| "justification": "Evaluator error or invalid response.", | ||
| "requires_more_context": False, | ||
| } | ||
Dishant1804 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.