JUnit Foundation is a lightweight collection of JUnit watchers, interfaces, and static utility classes that supplement and augment the functionality provided by the JUnit API. The facilities provided by JUnit Foundation include method invocation hooks, test method timeout management, automatic retry of failed tests, shutdown hook installation, and test artifact capture.
The standard RunListener feature of JUnit provides a basic facility for implementing setup, cleanup, and monitoring procedures. However, the granularity of notifications offered by this feature is relatively coarse, firing before the first @Before
method and after the last @After
method - a unit of functionality known as an atomic test
. Notifications are available for the start, finish, and failure of atomic tests, but not for the particle methods
of which they're composed - individual @Test
and configuration methods (@Before
, @After
, @BeforeClass
, and @AfterClass
).
With JUnit Foundation, you can get notifications for the invocation of every configuration and test method. This method interception feature is analogous to the IInvokedMethodListener feature of TestNG. You can also get notifications for the creation of test class instances, the creation and invocation of JUnit runners (both test classes and suites), and the completion of test runs. JUnit Foundation also provides notifications for the start, finish, and failure of atomic tests
, with all of the details and context that are omitted by the standard JUnit RunListener.
The notifications provided by JUnit Foundation include the context that owns them - the JUnit runner. With this context and associated mapping methods, you're able to explore the entire hierarchy of the test run. For example, you can get the class runner that owns an invoked method or the suite runner that owns a class runner:
The objects passed to your service provider implementation are members of a hierarchy that JUnit builds to represent the test collection being executed. JUnit Foundation provides a set of static methods that enable you walk this object hierarchy.
LifecycleHooks.getParentOf(Object child)
Get the parent runner that owns specified child runner or framework method.LifecycleHooks.getRunnerForTarget(Object target)
Get the parent runner that owns the specified instance.LifecycleHooks.getTargetForRunner(Object runner)
Get the JUnit test class instance owned by the specified parent runner.LifecycleHooks.getTestClassOf(Object runner)
Get the test class object associated with the specified parent runner.LifecycleHooks.getAtomicTestOf(Object runner)
Get the atomic test object for the specified class runner.LifecycleHooks.getCallableOf(Object runner, Object child)
Get the callable closure associated with the specified parent runner and child runner or framework method.
package com.nordstrom.example;
import com.nordstrom.automation.junit.LifecycleHooks;
import com.nordstrom.automation.junit.MethodWatcher;
import com.nordstrom.automation.junit.RunReflectiveCall;
import com.nordstrom.automation.junit.TestClassWatcher;
import org.junit.runners.model.FrameworkMethod;
import org.junit.runners.model.TestClass;
public class ExploringWatcher implements TestClassWatcher, MethodWatcher<FrameworkMethod> {
// ...
@Override
public void testClassStarted(TestClass testClass, Object runner) {
// if this is a Suite runner
if (runner instanceof org.junit.runners.Suite) {
// get the parent of this runner
Object parent = LifecycleHooks.getParentOf(runner);
// ...
}
// ...
}
@Override
public void beforeInvocation(Object runner, FrameworkMethod method, ReflectiveCallable callable) {
Object target = LifecycleHooks.getFieldValue(callable, "val$target");
// if target defined
if (target != null) {
// get the test class of the runner
TestClass testClass = LifecycleHooks.getTestClassOf(runner);
// ...
}
// ...
}
@Override
public void afterInvocation(Object runner, FrameworkMethod method, ReflectiveCallable callable, Throwable thrown) {
// if child is a 'before' configuration method
if (null != method.getAnnotation(Before.class)) {
// get the atomic test of the runner
AtomicTest<FrameworkMethod> atomicTest = LifecycleHooks.getAtomicTestOf(runner);
// get the "identity" method
FrameworkMethod identity = atomicTest.getIdentity();
// ...
}
// ...
}
// ...
}
Note that some associations are not available for specific context:
TestClass
objects forSuite
runners have no associated atomic tests.FrameworkMethod
objects for static configuration methods (@BeforeClass
/@AfterClass
) have no associated atomic tests.FrameworkMethod
objects for ignored test methods (@Ignore
) have no associated target test class instances.
JUnit Foundation provides several static utility methods that can be useful in your service provider implementation.
LifecycleHooks.isParticleMethod(Object child)
Determines if the specified child is a test or configuration method.LifecycleHooks.getAnnotation(Object object, Class<T> annotationType)
Returns the annotation of the specified type if the object is tagged with such an annotation.LifecycleHooks.describeChild(Object target, Object child)
Get aDescription
for the indicated child object from the runner for the specified test class instance.LifecycleHooks.getInstanceClass(Object instance)
Get class of specified test class instance.LifecycleHooks.getFieldValue(Object target, String name)
Get the value of the specified field from the supplied object.LifecycleHooks.encloseCallable(Method method, Object target, Object... params)
Synthesize a callable closure with the specified parameters.
The hooks that enable JUnit Foundation test lifecycle notifications are installed dynamically with bytecode enhancement performed by Byte Buddy. To maintain compatibility with solution-specific runners like SpringRunner, JUnit Foundation intercepts calls to several core JUnit classes directly via its Java agent implementation:
<!-- pom.xml -->
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<artifactId>example-maven-pom</artifactId>
<!-- ... -->
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.target>1.7</maven.compiler.target>
<maven.compiler.source>1.7</maven.compiler.source>
</properties>
<dependencies>
<dependency>
<groupId>com.nordstrom.tools</groupId>
<artifactId>junit-foundation</artifactId>
<version>12.2.0</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<pluginManagement>
<plugins>
<!-- Add this if you plan to import into Eclipse -->
<plugin>
<groupId>org.eclipse.m2e</groupId>
<artifactId>lifecycle-mapping</artifactId>
<version>1.0.0</version>
<configuration>
<lifecycleMappingMetadata>
<pluginExecutions>
<pluginExecution>
<pluginExecutionFilter>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<versionRange>[1.0.0,)</versionRange>
<goals>
<goal>properties</goal>
</goals>
</pluginExecutionFilter>
<action>
<execute />
</action>
</pluginExecution>
</pluginExecutions>
</lifecycleMappingMetadata>
</configuration>
</plugin>
</plugins>
</pluginManagement>
<plugins>
<!-- This provides the path to the Java agent -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<version>3.1.1</version>
<executions>
<execution>
<id>getClasspathFilenames</id>
<goals>
<goal>properties</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.22.0</version>
<configuration>
<argLine>-javaagent:${com.nordstrom.tools:junit-foundation:jar}</argLine>
</configuration>
</plugin>
</plugins>
</build>
</project>
// build.gradle
// ...
apply plugin: 'maven'
sourceCompatibility = 1.7
targetCompatibility = 1.7
repositories {
mavenLocal()
mavenCentral()
// ...
}
dependencies {
// ...
compile 'com.nordstrom.tools:junit-foundation:12.2.0'
}
ext {
junitFoundation = configurations.compile.resolvedConfiguration.resolvedArtifacts.find { it.name == 'junit-foundation' }
}
test.doFirst {
jvmArgs "-javaagent:${junitFoundation.file}"
}
test {
// debug true
// not required, but definitely useful
testLogging.showStandardStreams = true
}
To enable notifications in the native test runner of IDEs like Eclipse or IDEA, add the -javaagent
option to the JVM options of your run/debug configuration.
To provide reliable, consistent behavior regardless of execution environment, JUnit Foundation notification subscribers are registered through the standard Java ServiceLoader mechanism. To attach JUnit Foundation watchers and standard JUnit run listeners to your tests, declare them in ServiceLoader provider configuration files in a META-INF/services/ folder of your project resources:
# implements com.nordstrom.automation.junit.MethodWatcher
com.mycompany.example.MyMethodWatcher
# implements com.nordstrom.automation.junit.ShutdownListener
com.mycompany.example.MyShutdownListener
# extends org.junit.runner.notification.RunListener
# implements com.nordstrom.automation.junit.JUnitWatcher
com.mycompany.example.MarkedRunListener
# extends org.junit.runner.notification.RunListener
com.mycompany.example.MyRunListener
The preceding ServiceLoader provider configuration files declare a JUnit Foundation MethodWatcher, a JUnit Foundation ShutdownListener, and two standard JUnit RunListener providers.
Note that every JUnit Foundation service provider interface extends a common marker interface - JUnitWatcher. All watcher/listener service providers can be declared in a single common configuration file, eliminating the need to declare classes implementing multiple interfaces in several different configuration files.
As indicated by the comments, the MarkedRunListener
service provider extends the standard RunListener
class and implements the JUnitWatcher
marker interface. The marker allows this service provider to be declared in the common configuration file. This approach is employed by the RunAnnouncer
run listener that JUnit Foundation uses to provide enhanced run event notifications.
JUnit Foundation defines several service provider interfaces that notification subscribers can implement:
- JUnitWatcher
JUnitWatcher is a marker interface for JUnit test execution event watchers. It can also be used to mark extensions to the standard RunListener class. - ShutdownListener
ShutdownListener provides callbacks for events in the lifecycle of the JVM that runs the Java code that comprises your tests. It receives the following notification:- The JVM that's running the tests is about to close. This signals the completion of the test run.
- RunnerWatcher
RunnerWatcher provides callbacks for events in the lifecycle ofParentRunner
objects. It receives the following notifications:- A
ParentRunner
object is about to run. - A
ParentRunner
object has finished running.
- A
- TestObjectWatcher
TestObjectWatcher provides callbacks for events in the lifecycle of Java test class instances. It receives the following notification:- An instance of a JUnit test class has been created for the execution of a single
atomic test
.
- An instance of a JUnit test class has been created for the execution of a single
- RunWatcher
RunWatcher provides callbacks for events in the lifecycle ofatomic tests
. This is a functional replacement for the standard JUnit RunListener, with the execution context that the standard interface lacks. It receives the following notifications:- An
atomic test
is about to start. - An
atomic test
has finished, pass or fail. - An
atomic test
has failed. - An
atomic test
flags that it assumes a condition that is false. - An
atomic test
has been ignored.
- An
- MethodWatcher
MethodWatcher provides callbacks for events in the lifecycle of aparticle method
, which is a component of anatomic test
. It receives the following notifications:- A
particle method
is about to be invoked. - A
particle method
has just finished.
- A
package com.nordstrom.example;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import org.junit.runners.model.FrameworkMethod;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class LoggingWatcher implements MethodWatcher<FrameworkMethod> {
private static final Logger LOGGER = LoggerFactory.getLogger(LoggingWatcher.class);
@Override
public void beforeInvocation(Object runner, FrameworkMethod method, ReflectiveCallable callable) {
if (null != method.getAnnotation(Test.class)) {
LOGGER.info(">>>>> ENTER 'test' method {}", method.getName());
} else if (null != method.getAnnotation(Before.class)) {
LOGGER.info(">>>>> ENTER 'before' method {}", method.getName());
} else if (null != method.getAnnotation(After.class)) {
LOGGER.info(">>>>> ENTER 'after' method {}", method.getName());
} else if (null != method.getAnnotation(BeforeClass.class)) {
LOGGER.info(">>>>> ENTER 'before-class' method {}", method.getName());
} else if (null != method.getAnnotation(AfterClass.class)) {
LOGGER.info(">>>>> ENTER 'after-class' method {}", method.getName());
}
}
@Override
public void afterInvocation(Object runner, FrameworkMethod method, ReflectiveCallable callable, Throwable thrown) {
if (null != method.getAnnotation(Test.class)) {
LOGGER.info("<<<<< LEAVE 'test' method {}", method.getName());
} else if (null != method.getAnnotation(Before.class)) {
LOGGER.info("<<<<< LEAVE 'before' method {}", method.getName());
} else if (null != method.getAnnotation(After.class)) {
LOGGER.info("<<<<< LEAVE 'after' method {}", method.getName());
} else if (null != method.getAnnotation(BeforeClass.class)) {
LOGGER.info("<<<<< LEAVE 'before-class' method {}", method.getName());
} else if (null != method.getAnnotation(AfterClass.class)) {
LOGGER.info("<<<<< LEAVE 'after-class' method {}", method.getName());
}
}
}
Note that the implementation in this method watcher uses the annotations attached to the method objects to determine the type of method they're intercepting. Because each test method can have multiple configuration methods (both before and after), you may need to define additional conditions to control when your implementation runs. Examples of additional conditions include method name, method annotation, or an execution flag.
As indicated previously, JUnit Foundation will automatically attach standard JUnit RunListener
providers that are declared in the associated ServiceLoader
provider configuration file (i.e. - org.junit.runner.notification.RunListener). Run listeners that implement the JUnitWatcher
marker interface can be declared in the common configuration file (i.e. - com.nordstrom.automation.junit.JUnitWatcher). Declared run listeners are attached to the RunNotifier
supplied to the run()
method of JUnit runners. This feature eliminates behavioral differences between the various test execution environments like Maven, Gradle, and native IDE test runners.
JUnit Foundation uses this feature internally; notifications sent to RunWatcher
service providers are published by an auto-attached RunListener
. This notification-enhancing run listener, named RunAnnouncer, is registered via the aforementioned ServiceLoader provider configuration file.
JUnit Foundation attaches service providers that handle published event notifications via the standard ServiceLoader facility. You can acquire references to these service providers through the following methods:
LifecycleHooks.getAttachedWatcher(Class<T> watcherType)
Get reference to an instance of the specified watcher type.LifecycleHooks.getAttachedListener(Class<T> listenerType)
Get reference to an instance of the specified listener type.
The ability to run JUnit tests in parallel is provided by the JUnit 4 test runner of the Maven Surefire plugin. This feature utilizes private JUnit interfaces and undocuments behaviors, which greatly complicated the task of adding event notification hooks. As of version 9.0.3, JUnit Foundation supports parallel execution of both classes and methods.
JUnit provides a custom Parameterized runner for executing parameterized tests. Third-party solutions are also available, such as JUnitParams and ParameterizedSuite. Each of these solutions has its own implementation strategy, and no common interface is provided to access the parameters supplied to each invocation of the test methods in the parameterized class.
For lifecycle notification subscribers that need access to test invocation parameters, JUnit Foundation defines the ArtifactParams interface. This interface, along with the AtomIdentity test rule, enables test classes to publish their invocation parameters.
The following example demonstrates how to publish invocation parameters with the Parameterized runner. The implementation is relatively simple, due to the strategy used by the runner to inject parameters into the test methods.
The Parameterized
runner relies on instance fields to inject parameter values, and requires the test implementer to provide a constructor that initializes these fields. Alternatively, the implementer can mark the instance fields with the @Parameter
annotation.
package com.nordstrom.example;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import java.util.Map;
import org.junit.Rule;
import org.junit.Test;
import org.junit.runner.Description;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
import org.junit.runners.Parameterized.Parameters;
import com.nordstrom.automation.junit.ArtifactParams;
import com.nordstrom.automation.junit.AtomIdentity;
import com.google.common.base.Optional;
@RunWith(Parameterized.class)
public class ExampleTest implements ArtifactParams {
@Rule
public final AtomIdentity identity = new AtomIdentity(this);
private String input;
public ExampleTest(String input) {
this.input = input;
}
@Parameters
public static Object[] data() {
return new Object[] { "first test", "second test" };
}
@Override
public AtomIdentity getAtomIdentity() {
return identity;
}
@Override
public Description getDescription() {
return identity.getDescription();
}
@Override
public Optional<Map<String, Object>> getParameters() {
return Param.mapOf(Param.param("input", input));
}
@Test
public void parameterized() {
System.out.println("invoking: " + getDescription().getMethodName());
Optional<Map<String, Object>> params = identity.getParameters();
assertTrue(params.isPresent());
assertTrue(params.get().containsKey("input"));
assertEquals(input, params.get().get("input"));
}
}
The following example demonstrates how to publish invocation parameters with the JUnitParams runner. The implementation is more complex than the Parameterized
example above, due to the strategy used by the runner to inject parameters into the test methods.
The JUnitParams
runner injects parameters via test method arguments, with values provided by a val$params
field in the "callable" closures associated with each test method invocation. Unlike the Parameterized
runner, where all test methods in the class run with the same set of values, the JUnitParams
runner allows each test method in the class to run with its own unique set of values. This variability must be accounted for in the implementation of the getParameters()
method.
The example below queries the method for its parameter types, then uses these to cast each injected value to its corresponding type. This implementation assigns generic ordinal names to the parameters, because Java 7 reflection doesn't expose the names of method arguments. These could be acquired via the Java 8 API, or explicit mappings between test method signatures and argument names could be provided.
package com.nordstrom.example;
import static org.junit.Assert.assertEquals;
import java.util.Map;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.internal.runners.model.ReflectiveCallable;
import org.junit.runners.model.FrameworkMethod;
import junitparams.JUnitParamsRunner;
import junitparams.Parameters;
import com.nordstrom.automation.junit.ArtifactParams;
import com.nordstrom.automation.junit.AtomIdentity;
import com.google.common.base.Optional;
@RunWith(JUnitParamsRunner.class)
public class ArtifactCollectorJUnitParams implements ArtifactParams {
@Rule
public final AtomIdentity identity = new AtomIdentity(this);
@Override
public AtomIdentity getAtomIdentity() {
return identity;
}
@Override
public Description getDescription() {
return identity.getDescription();
}
@Override
public Optional<Map<String, Object>> getParameters() {
// get runner for this target
Object runner = LifecycleHooks.getRunnerForTarget(this);
// get atomic test of target runner
AtomicTest<FrameworkMethod> test = LifecycleHooks.getAtomicTestOf(runner);
// get "callable" closure of test method
ReflectiveCallable callable = LifecycleHooks.getCallableOf(runner, test.getIdentity());
// get test method parameters
Class<?>[] paramTypes = test.getIdentity().getMethod().getParameterTypes();
try {
// extract execution parameters from "callable" closure
Object[] params = LifecycleHooks.getFieldValue(callable, "val$params");
// NOTE: The "callable" closure also includes:
// * this$0 - test case FrameworkMethod object
// * val$target - test class instance ('this')
// Only 'val$params' is unavailable elsewhere.
// allocate named parameters array
Param[] namedParams = new Param[params.length];
// populate named parameters array
for (int i = 0; i < params.length; i++) {
// create array item with generic name
namedParams[i] = Param.param("param" + i, paramTypes[i].cast(params[i]));
}
// return params map as Optional
return Param.mapOf(namedParams);
} catch (IllegalAccessException | NoSuchFieldException e) {
return Optional.absent();
}
}
@Test
@Parameters({ "first test", "second test" })
public void parameterized(String input) {
System.out.println("parameterized: input = [" + input + "]");
assertEquals("first test", input);
}
}
For scenarios that require artifact capture of parameterized tests, the ArtifactCollector class extends the AtomIdentity test rule. This enables artifact type implementations to access invocation parameters and Description object for the current atomic test
. For more details, see the Artifact Capture section below.
JUnit provides two mechanisms for limiting the duration tests:
- The timeout parameter of the
@Test
annotation
With thetimeout
parameter, you can set an explicit timeout interval in milliseconds on an individual test method. If a test fails to complete within the specified interval, JUnit terminates the test and throws TestTimedOutException. - The Timeout test rule
With theTimeout
test rule, you can apply the same timeout interval to all of the methods in a test class.
JUnit Foundation consolidates and extends the functionality of these mechanisms:
- A global per-test timeout interval can be activated by setting the
TEST_TIMEOUT
configuration option to the desired default test timeout interval in milliseconds. This timeout specification is applied via thetimeout
parameter of the@Test
annotation to every test method that doesn't explicitly specify atimeout
parameter with a longer interval. - A global per-class timeout interval can be activated by setting the
TIMEOUT_RULE
configuration option to the desired default test timeout interval in milliseconds. This timeout specification is applied via theTimeout
test rule to every test class that doesn't declare aTimeout
test rule with a longer interval. - Timeout enforcement can be disabled locally by declaring a
Timeout
test rule that specifies an interval of zero (0). - Timeout enforcement can be disabled globally by setting the
TIMEOUT_RULE
configuration option, specifying an interval of zero (0). - Unless enforcement is disabled, per-test timeout intervals override shorter intervals specified by rule-based mechanisms.
Some types of tests are inherently non-deterministic, which can cause them to fail sporadically in the absence of an actual defect. Most of the time, these tests will pass if you run them again. For these sorts of "noise" failures, JUnit Foundation provides an automatic retry feature.
Automatic retry is applied by the JUnit Foundation Java agent, activated by setting the MAX_RETRY
configuration option to the maximum retry attempts that will be made if a test method fails. The automatic retry feature can be disabled on a per-method or per-class basis via the @NoRetry
annotation.
META-INF/services/com.nordstrom.automation.junit.JUnitRetryAnalyzer is the service loader retry analyzer configuration file. By default, this file is absent. To add managed analyzers, create this file and add the fully-qualified names of their classes, one line per item.
Failed attempts of tests that are selected for retry are tallied as ignored tests. These tests are differentiated from actual ignored tests by the presence of a @RetriedTest
annotation in place of the original @Test
annotation. See RunListenerAdapter.testIgnored(Description)
for more details.
JUnit provides a run listener feature, but this operates most readily on a per-class basis. The method for attaching these run listeners also imposes structural and operational constraints on JUnit projects, and the configuration required to register for end-of-suite notifications necessitates hard-coding the composition of the suite. All of these factors make run listeners unattractive or ineffectual for final cleanup operations.
JUnit Foundation enables you to declare shutdown listeners in a service loader configuration file.
As shown previously under ServiceLoader Configuration Files, META-INF/services/com.nordstrom.automation.junit.JUnitWatcher is the configuration file where shutdown listeners are declared. By default, this file is absent. To add managed listeners, create this file and add the fully-qualified names of their classes, one line per item. When it loads, the JUnit Foundation Java agent uses the service loader to instantiate your shutdown listeners and attaches them to the active JVM.
- ArtifactCollector:
ArtifactCollector is a JUnit test watcher that serves as the foundation for artifact-capturing test watchers. This is a generic class, with the artifact-specific implementation provided by instances of the ArtifactType interface. For artifact capture scenarios where you need access to the current method description or the values provided to parameterized tests, the test class can implement the ArtifactParams interface. - ArtifactParams:
By implementing the ArtifactParams interface in your test classes, you enable the artifact capture framework to access test method description objects and parameterized test values. These can be used for composing, naming, and storing artifacts. - ArtifactType:
Classes that implement the ArtifactType interface provide the artifact-specific methods used by the ArtifactCollector watcher to capture and store test-related artifacts. The unit tests for this project include a reference implementation (UnitTestArtifact) that provides a basic outline for a scenario-specific artifact provider. This artifact provider is specified as the superclass type parameter in the UnitTestCapture watcher, which is a lightweight extension of ArtifactCollector. The most basic example is shown below:
package com.nordstrom.example;
import java.nio.file.Path;
import java.nio.file.Paths;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.nordstrom.automation.junit.ArtifactType;
public class MyArtifactType extends ArtifactType {
private static final String ARTIFACT_PATH = "artifacts";
private static final String EXTENSION = "txt";
private static final String ARTIFACT = "This text artifact was captured for '%s'";
private static final Logger LOGGER = LoggerFactory.getLogger(MyArtifactType.class);
@Override
public boolean canGetArtifact(Object instance) {
return true;
}
@Override
public byte[] getArtifact(Object instance, Throwable reason) {
if (instance instanceof ArtifactParams) {
ArtifactParams publisher = (ArtifactParams) instance;
return String.format(ARTIFACT, publisher.getDescription().getMethodName()).getBytes().clone();
} else {
return new byte[0];
}
}
@Override
public Path getArtifactPath() {
return super.getArtifactPath(instance).resolve(ARTIFACT_PATH);
}
@Override
public String getArtifactExtension() {
return EXTENSION;
}
@Override
public Logger getLogger() {
return LOGGER;
}
}
Pay special attention to the implementation of getArtifact(Object, Throwable)
above. This code will only capture artifacts for test classes that implement the ArtifactParams interface, and it uses this interface to get the description object for the current test.
package com.nordstrom.example;
import com.nordstrom.automation.junit.ArtifactCollector;
public class MyArtifactCapture extends ArtifactCollector<MyArtifactType> {
public MyArtifactCapture(Object instance) {
super(instance, new MyArtifactType());
}
}
The preceding code is an example of how the artifact type definition can be assigned as the type parameter in a subclass of ArtifactCollector. This isn't strictly necessary, but will make your code more concise, as the next example demonstrates. This technique also provides the opportunity to extend or alter the basic artifact capture behavior.
package com.nordstrom.example;
import com.nordstrom.automation.junit.ArtifactCollector;
import com.nordstrom.automation.junit.ArtifactParams;
import org.junit.Rule;
import org.junit.runner.Description;
public class ExampleTest implements ArtifactParams {
@Rule // Option #1: Attach a pre-composed artifact capture subclass
public final MyArtifactCapture watcher1 = new MyArtifactCapture(this);
@Rule // Option #2: Compose type-specific artifact collector in-line
public final ArtifactCollector<MyArtifactType> watcher2 = new ArtifactCollector<>(this, new MyArtifactType());
// ...
@Override
public AtomIdentity getAtomIdentity() {
return watcher1;
}
@Override
public Description getDescription() {
return watcher1.getDescription();
}
}
This example demonstrates two techniques for attaching artifact collectors to test classes. Either technique will activate basic artifact capture functionality. Of course, the first option is required to activate extended behavior implemented in a type-specific subclass of ArtifactCollector.
Although the ExampleTest class in the previous section implements the ArtifactParams interface, this non-parameterized example only shows half of the story. In addition to the Description objects of atomic tests
, classes that implement parameterized tests are able to publish their invocation parameters, and the artifact capture feature is able to access them.
The following example extends the previous artifact type to add parameter-awareness:
class MyParameterizedType extends MyArtifactType {
@Override
public byte[] getArtifact(Object instance, Throwable reason) {
if (instance instanceof ArtifactParams) {
ArtifactParams publisher = (ArtifactParams) instance;
StringBuilder artifact = new StringBuilder("method: ")
.append(publisher.getDescription().getMethodName()).append("\n");
if (publisher.getParameters().isPresent()) {
for (Entry<String, Object> param : publisher.getParameters().get().entrySet()) {
artifact.append(param.getKey()).append(": [").append(param.getValue()).append("]\n");
}
}
return artifact.toString().getBytes().clone();
} else {
return new byte[0];
}
}
}
Notice the calls to getParameters()
, which retrieve the invocation parameters published by the test class instance. There's also a call to getDescription()
, which returns the Description object for the current atomic test
.
The implementation below composes a type-specific subclass of ArtifactCollector to produce a parameter-aware artifact collector:
package com.nordstrom.example;
import com.nordstrom.automation.junit.ArtifactCollector;
public class MyParameterizedCapture extends ArtifactCollector<MyParameterizedType> {
public MyParameterizedCapture(Object instance) {
super(instance, new MyParameterizedType());
}
}
The following example implements a parameterized test class that publishes its invocation parameters through the ArtifactParams interface. It uses the custom Parameterized runner to invoke the parameterized()
test method twice - once with input "first test", and once with input "second test". The test class constructor accepts the invocation parameter as its argument and stores it in an instance field for use by the test.
- The
getAtomIdentity()
method provides access to the ParameterizedCapture test watcher, which implements the AtomIdentity interface. - The
getDescription()
method acquires the Description object for the currentatomic test
from thewatcher
test rule. - The
getParameters()
method uses static methods of the ArtifactParams interface to assemble the map of invocation parameters from theinput
instance field populated by the constructor.
package com.nordstrom.example;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import java.util.Arrays;
import java.util.Map;
import org.junit.Rule;
import org.junit.Test;
import org.junit.runner.Description;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
import org.junit.runners.Parameterized.Parameters;
import com.nordstrom.automation.junit.ArtifactParams;
import com.nordstrom.automation.junit.AtomIdentity;
import com.google.common.base.Optional;
@RunWith(Parameterized.class)
public class ParameterizedTest implements ArtifactParams {
@Rule
public final MyParameterizedCapture watcher = new MyParameterizedCapture(this);
private String input;
public ParameterizedTest(String input) {
this.input = input;
}
@Parameters
public static Object[] data() {
return new Object[] { "first test", "second test" };
}
@Override
public AtomIdentity getAtomIdentity() {
return watcher;
}
@Override
public Description getDescription() {
return watcher.getDescription();
}
@Override
public Optional<Map<String, Object>> getParameters() {
return Param.mapOf(Param.param("input", input));
}
@Test
public void parameterized() {
Optional<Map<String, Object>> params = watcher.getParameters();
assertTrue(params.isPresent());
assertTrue(params.get().containsKey("input"));
assertEquals(input, params.get().get("input"));
}
}