Skip to content

NeurAI-Lab/SARL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Semantic Aware Representation Learning (SARL)

Official Repository for the ICLR'25 paper Semantic Aware Representation Learning for Lifelong Learning

We extended the SCoMMER repo with our method

Overview

SARL Diagram

SARL employs activation sparsity to emulate brain-like sparse coding, representing each object with a class prototype derived from the mean representations of object samples. The semantic relationships are utilized to encourage new object prototypes to align with the class prototypes of similar objects and diverge from dissimilar ones. Additionally, SARL ensures model stability through prototype regularization, mitigating forgetting and enabling effective consolidation of information in lifelong learning.

Setup

  • Use python main.py to run experiments.
  • To run SARL with the hyperparameters selected in the paper, use the files in the script folder
Seq-Cifar10:      python scripts/sarl/seq-cifar10.py
Seq-Cifar100:     python scripts/sarl/seq-cifar100.py
Seq-TinyImageNet: python scripts/sarl/seq-cifar100.py
GCIL-Cifar100:    python scripts/sarl/seq-cifar100.py

Cite our work

@inproceedings{sarfrazsemantic,
  title={Semantic Aware Representation Learning for Lifelong Learning},
  author={Sarfraz, Fahad and Arani, Elahe and Zonooz, Bahram},
  booktitle={The Thirteenth International Conference on Learning Representations}
}

Requirements

  • torch==1.7.0

  • torchvision==0.9.0

  • quadprog==0.1.7

About

No description, website, or topics provided.

Resources

License

MIT, MIT licenses found

Licenses found

MIT
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages