Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 10 additions & 4 deletions integration_tests/src/main/python/array_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,10 +99,15 @@ def test_orderby_array_of_structs(data_gen):
def test_array_contains(data_gen):
arr_gen = ArrayGen(data_gen)
lit = gen_scalar(data_gen, force_no_nulls=True)
assert_gpu_and_cpu_are_equal_collect(lambda spark: two_col_df(
spark, arr_gen, data_gen).select(array_contains(col('a'), lit.cast(data_gen.data_type)),
array_contains(col('a'), col('b')),
array_contains(col('a'), col('a')[5])), no_nans_conf)

def get_input(spark):
return two_col_df(spark, arr_gen, data_gen)

assert_gpu_and_cpu_are_equal_collect(lambda spark: get_input(spark).select(
array_contains(col('a'), lit.cast(data_gen.data_type)),
array_contains(col('a'), col('b')),
array_contains(col('a'), col('a')[5])
), no_nans_conf)


# Test array_contains() with a literal key that is extracted from the input array of doubles
Expand All @@ -118,6 +123,7 @@ def main_df(spark):
return df.select(array_contains(col('a'), chk_val))
assert_gpu_and_cpu_are_equal_collect(main_df)


@pytest.mark.skipif(is_before_spark_311(), reason="Only in Spark 3.1.1 + ANSI mode, array index throws on out of range indexes")
@pytest.mark.parametrize('data_gen', array_gens_sample, ids=idfn)
def test_get_array_item_ansi_fail(data_gen):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -223,17 +223,50 @@ case class GpuArrayContains(left: Expression, right: Expression)
left.nullable || right.nullable || left.dataType.asInstanceOf[ArrayType].containsNull
}

override def doColumnar(lhs: GpuColumnVector, rhs: GpuScalar): ColumnVector =
lhs.getBase.listContains(rhs.getBase)
/**
* Helper function to account for `libcudf`'s `listContains()` semantics.
*
* If a list row contains at least one null element, and is found not to contain
* the search key, `libcudf` returns false instead of null. SparkSQL expects to
* return null in those cases.
*
* This method determines the result's validity mask by ORing the output of
* `listContains()` with the NOT of `listContainsNulls()`.
* A result row is thus valid if either the search key is found in the list,
* or if the list does not contain any null elements.
*/
private def orNotContainsNull(containsResult: ColumnVector,
inputListsColumn:ColumnVector): ColumnVector = {
val notContainsNull = withResource(inputListsColumn.listContainsNulls) {
_.not
}
val containsKeyOrNotContainsNull = withResource(notContainsNull) {
containsResult.or(_)
}
withResource(containsKeyOrNotContainsNull) {
containsResult.copyWithBooleanColumnAsValidity(_)
}
}

override def doColumnar(lhs: GpuColumnVector, rhs: GpuScalar): ColumnVector = {
val inputListsColumn = lhs.getBase
withResource(inputListsColumn.listContains(rhs.getBase)) {
orNotContainsNull(_, inputListsColumn)
}
}

override def doColumnar(numRows: Int, lhs: GpuScalar, rhs: GpuScalar): ColumnVector =
throw new IllegalStateException("This is not supported yet")

override def doColumnar(lhs: GpuScalar, rhs: GpuColumnVector): ColumnVector =
throw new IllegalStateException("This is not supported yet")

override def doColumnar(lhs: GpuColumnVector, rhs: GpuColumnVector): ColumnVector =
lhs.getBase.listContainsColumn(rhs.getBase)
override def doColumnar(lhs: GpuColumnVector, rhs: GpuColumnVector): ColumnVector = {
val inputListsColumn = lhs.getBase
withResource(inputListsColumn.listContainsColumn(rhs.getBase)) {
orNotContainsNull(_, inputListsColumn)
}
}

override def prettyName: String = "array_contains"
}