Skip to content
Open
Show file tree
Hide file tree
Changes from 31 commits
Commits
Show all changes
39 commits
Select commit Hold shift + click to select a range
f335cc7
custom tests for selective activation checkpointing for layernorm mlp
jaimec00 Oct 27, 2025
e349f46
add selective layernorm mlp to te.pytorch
jaimec00 Oct 27, 2025
aa18e74
update test and fix SLNMLP bug
jaimec00 Oct 27, 2025
8f50f4a
implement slnmlp
jaimec00 Oct 28, 2025
f6f034b
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 28, 2025
00841c2
fix tests pointed out by greptile app bot, still pass
jaimec00 Oct 28, 2025
955f068
minor formatting change in tests/pytorch/selective_layernorm_mlp/dist…
jaimec00 Oct 28, 2025
5e47706
remove duplicate import in test/pytorch/selective_layernorm_mlp/test_…
jaimec00 Oct 28, 2025
9a69a6c
clean up tests, remove unused imports
jaimec00 Oct 28, 2025
ea8270d
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 28, 2025
f896579
remove unused paths in test_deffered_init
jaimec00 Oct 28, 2025
9ee2df8
fix issue with zero_centered_gamma in test_numerics reference impleme…
jaimec00 Oct 28, 2025
05d3908
clean up tests
jaimec00 Oct 28, 2025
435fe9c
make comparison.py more extensive, cleaner output
jaimec00 Oct 28, 2025
903f37e
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 28, 2025
0a31a70
fix small typo in tests/pytorch/selective_layernorm_mlp/compare.py
jaimec00 Oct 28, 2025
418dce6
fix typo by grepbot in compare.py
jaimec00 Oct 28, 2025
31cdd9d
make selectiuve activation checkpointing optional in slnmlp via check…
jaimec00 Oct 28, 2025
fae6052
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 28, 2025
a6a927e
add comments to clarify logic
jaimec00 Oct 29, 2025
16b816b
add checkpoint param to pytests, change compare.py to compare checkpp…
jaimec00 Oct 29, 2025
f623124
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 29, 2025
ff6f58f
refactor tests to call modified LayerNormMLP
jaimec00 Oct 29, 2025
8cbdb91
refactor to implement selective activation checkpointing directly int…
jaimec00 Oct 29, 2025
c46ad4c
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 29, 2025
b068c5f
fix skip explanation for cuda_graphs.py
jaimec00 Oct 29, 2025
f0670ed
make _recompute deal with lists instead of tuples
jaimec00 Oct 29, 2025
5a34186
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 29, 2025
e12fa7c
fix MOST cuda graph failures by initializing identical quantizers dur…
jaimec00 Oct 30, 2025
9b29e49
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 30, 2025
cc52db5
fix cuda graphs issue, all tests pass now
jaimec00 Oct 31, 2025
e94ef33
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 31, 2025
ebd2329
fix small logic bugs, clean up
jaimec00 Nov 1, 2025
212fadb
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Nov 1, 2025
402e5f9
integrate tests into main testing scripts
jaimec00 Nov 5, 2025
483bbf6
incorporate rng state tracking in checkpointing
jaimec00 Nov 5, 2025
643a3c8
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Nov 5, 2025
0d0255f
clean up tests
jaimec00 Nov 5, 2025
d86bc00
fix return type mismatches
jaimec00 Nov 5, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
269 changes: 269 additions & 0 deletions tests/pytorch/selective_layernorm_mlp/compare.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,269 @@
import time
import torch
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

A general comment about this file - it is really nice, but it is not a test - it doesn't actually test anything, it just measures. We could introduce some test functionality here by e.g. ensuring that the error between the checkpointed LayerNormMLP is zero (since this shouldn't affect numerics) or that the memory used is lower (ideally we would quantify the expected memory usage and test against that, but for now even just making sure that the memory usage goes down would be good.

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sounds good, I converted it into a test for checking that memory goes down at least 6X in the forward pass. I also asserted that checkpointing is slower than not checkpointing in the backward pass (not sure if this is helpful, but let me know), and that the differences are 0. I put this test in tests/pytorch/layernorm_mlp/test_selective_activation_checkpointing.py because I wasn't sure where it fit in the rest of the testing scripts, but let me know if this test would be better elsewhere!

from transformer_engine.pytorch import LayerNormMLP
from collections import defaultdict

torch.manual_seed(1234)
device = torch.device("cuda")


class _Sequential(torch.nn.Sequential):
"""Sequential model that forwards keyword arguments to modules"""

def forward(self, input_: torch.Tensor, **kwargs) -> torch.Tensor:
x = input_
for module in self:
x = module(x, **kwargs)
return x


class ModelConfig:
def __init__(
self,
hidden_size: int = 128,
ffn_hidden_size: int = 512,
layers: int = 1,
):
self._hidden_size = hidden_size
self._ffn_hidden_size = ffn_hidden_size
self._layers = layers

def build(self):

ln_list, sln_list = [], []
for _ in range(self._layers):
ln = LayerNormMLP(self._hidden_size, self._ffn_hidden_size, checkpoint=False).to(device)
sln = LayerNormMLP(self._hidden_size, self._ffn_hidden_size, checkpoint=True).to(device)
with torch.no_grad():
sln.layer_norm_weight = torch.nn.Parameter(ln.layer_norm_weight.clone())
sln.layer_norm_bias = torch.nn.Parameter(ln.layer_norm_bias.clone())
sln.fc1_weight = torch.nn.Parameter(ln.fc1_weight.clone())
sln.fc2_weight = torch.nn.Parameter(ln.fc2_weight.clone())
sln.fc1_bias = torch.nn.Parameter(ln.fc1_bias.clone())
sln.fc2_bias = torch.nn.Parameter(ln.fc2_bias.clone())
ln_list.append(ln)
sln_list.append(sln)

ln_model = _Sequential(*ln_list)
sln_model = _Sequential(*sln_list)

return ln_model, sln_model


config = {
"small": ModelConfig(128, 512, 12),
"medium": ModelConfig(512, 2048, 12),
"large": ModelConfig(1024, 4096, 12),
"huge": ModelConfig(2048, 8192, 12),
}

seq_sizes = [2**7, 2**10, 2**14, 2**16]


class Profiler:
def __init__(self):
self.stats = defaultdict(
lambda: {
"ln_stats": {
"fwd_stats": {
"mem": 0,
"time": 0,
},
"bwd_stats": {
"mem": 0,
"time": 0,
},
},
"sln_stats": {
"fwd_stats": {
"mem": 0,
"time": 0,
},
"bwd_stats": {
"mem": 0,
"time": 0,
},
},
"diff": {
"out": 0,
"layer_norm_weight": 0,
"layer_norm_bias": 0,
"fc1_weight": 0,
"fc1_bias": 0,
"fc2_weight": 0,
"fc2_bias": 0,
},
}
)

def compare(self, desc, ln_model, sln_model, data):

def _warmup(model, tensor):
for _ in range(10):
model(tensor).sum().backward()

def _run_fwd(model, tensor):

torch.cuda.reset_peak_memory_stats(device)
start_time, end_time = torch.cuda.Event(enable_timing=True), torch.cuda.Event(
enable_timing=True
)

torch.cuda.synchronize()
start_mem = torch.cuda.memory_allocated(device)
start_time.record()
out = model(tensor)
end_time.record()
end_time.synchronize()
elapsed = start_time.elapsed_time(end_time)
peak_mem = torch.cuda.max_memory_allocated(device)
mem = float(peak_mem - start_mem)

return out, elapsed, mem

def _run_bwd(model, out):

model.zero_grad(set_to_none=False)
loss = out.sum()

torch.cuda.reset_peak_memory_stats(device)
start_time, end_time = torch.cuda.Event(enable_timing=True), torch.cuda.Event(
enable_timing=True
)

torch.cuda.synchronize()
start_mem = torch.cuda.memory_allocated(device)
start_time.record()
loss.backward()
end_time.record()
end_time.synchronize()
elapsed = start_time.elapsed_time(end_time)
peak_mem = torch.cuda.max_memory_allocated(device)
mem = float(peak_mem - start_mem)

param_grads = self._collect_param_grads(model)
return param_grads, elapsed, mem

_warmup(ln_model, data.clone())
ln_fwd_out, ln_fwd_time, ln_fwd_mem = _run_fwd(ln_model, data.clone())
ln_grads, ln_bwd_time, ln_bwd_mem = _run_bwd(ln_model, ln_fwd_out)

_warmup(sln_model, data.clone())
sln_fwd_out, sln_fwd_time, sln_fwd_mem = _run_fwd(sln_model, data.clone())
sln_grads, sln_bwd_time, sln_bwd_mem = _run_bwd(sln_model, sln_fwd_out)

self.stats[desc]["ln_stats"]["fwd_stats"]["time"] = ln_fwd_time
self.stats[desc]["ln_stats"]["fwd_stats"]["mem"] = ln_fwd_mem
self.stats[desc]["sln_stats"]["fwd_stats"]["time"] = sln_fwd_time
self.stats[desc]["sln_stats"]["fwd_stats"]["mem"] = sln_fwd_mem

# Track maximum absolute difference between outputs as a convergence metric.
self.stats[desc]["diff"]["out"] = self._max_diff(ln_fwd_out, sln_fwd_out)

self.stats[desc]["ln_stats"]["bwd_stats"]["time"] = ln_bwd_time
self.stats[desc]["ln_stats"]["bwd_stats"]["mem"] = ln_bwd_mem
self.stats[desc]["sln_stats"]["bwd_stats"]["time"] = sln_bwd_time
self.stats[desc]["sln_stats"]["bwd_stats"]["mem"] = sln_bwd_mem

for key in [
"layer_norm_weight",
"layer_norm_bias",
"fc1_weight",
"fc1_bias",
"fc2_weight",
"fc2_bias",
]:
self.stats[desc]["diff"][key] = self._max_diff(ln_grads[key], sln_grads[key])

def summarize(self):
_modules = [("ln_stats", "No Checkpointing"), ("sln_stats", "Checkpointing")]
_metric_map = {"time": (1, "ms"), "mem": (1e-6, "MB")}

left_w = 18 # "fwd time" / "bwd mem" label
col1_w = max(len(name) for _, name in _modules) + 2
col2_w = col1_w
val_w = 16 # number width

def header(metric, unit):
title = f"{metric.upper()} ({unit})"
print(title)
print(f"{'':<{left_w}}{_modules[0][1]:>{col1_w}}{_modules[1][1]:>{col2_w}}")
print(f"{'-'*left_w}{'-'*col1_w}{'-'*col2_w}")

for desc in self.stats:
print("#" * 80 + "\n")
print(desc + "\n")

for metric in ["time", "mem"]:
scale, unit = _metric_map[metric]
header(metric, unit)
for stage in ["fwd", "bwd"]:
v1 = self.stats[desc][_modules[0][0]][f"{stage}_stats"][metric] * scale
v2 = self.stats[desc][_modules[1][0]][f"{stage}_stats"][metric] * scale
# format with thousands separators and 3 decimals, aligned
s1 = f"{v1:>{val_w},.3f}"
s2 = f"{v2:>{val_w},.3f}"
print(f"{(stage+' ' + metric + ':'):<{left_w}}{s1:>{col1_w}}{s2:>{col2_w}}")
print() # blank line after each metric table

# Errors block
print("MAX ABSOLUTE ERRORS")
print(f"{'output:':<30}{self.stats[desc]['diff']['out']:>14.3e}")
for key in [
"layer_norm_weight",
"layer_norm_bias",
"fc1_weight",
"fc1_bias",
"fc2_weight",
"fc2_bias",
]:
label = f"{key}.grad:"
print(f"{label:<30}{self.stats[desc]['diff'][key]:>14.3e}")
print()

def _max_diff(self, ref, other):
"""Return max absolute difference between two tensors or collections."""
if ref is None or other is None:
return 0.0
if isinstance(ref, (list, tuple)):
diffs = [self._max_diff(r, o) for r, o in zip(ref, other)]
return max(diffs) if diffs else 0.0
return torch.max(torch.abs(ref.detach() - other.detach())).item()

def _collect_param_grads(self, model):
grads = {}
for name, param in model.named_parameters():
if param.grad is None:
continue
key = self._param_key(name)
if key is not None:
grads[key] = param.grad.detach().clone()
return grads

def _param_key(self, name):
return name.split(".")[-1]


def main():

profiler = Profiler()

for size in config:

ln_model, sln_model = config[size].build()

for seq_len in seq_sizes:

dummy_data = torch.randn((seq_len, config[size]._hidden_size), device=device)

desc = (
f"seq={seq_len}, hidden={config[size]._hidden_size},"
f" ffn_hidden={config[size]._ffn_hidden_size}, layers={config[size]._layers}\n"
)
profiler.compare(desc, ln_model, sln_model, dummy_data)

profiler.summarize()


if __name__ == "__main__":
main()
Loading