Skip to content

Conversation

@kaiyux
Copy link
Member

@kaiyux kaiyux commented Oct 27, 2025

Summary by CodeRabbit

Release Notes

  • New Features

    • Added environment-controlled selection of all-to-all execution methods for Mixture of Experts operations
    • Introduced optional low-precision combining mode for improved memory efficiency
  • Refactor

    • Centralized all-to-all method type definitions for unified module management

Description

Test Coverage

PR Checklist

Please review the following before submitting your PR:

  • PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.

  • PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.

  • Test cases are provided for new code paths (see test instructions)

  • Any new dependencies have been scanned for license and vulnerabilities

  • CODEOWNERS updated if ownership changes

  • Documentation updated as needed

  • The reviewers assigned automatically/manually are appropriate for the PR.

  • Please check this after reviewing the above items as appropriate for this PR.

GitHub Bot Help

/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...

Provide a user friendly way for developers to interact with a Jenkins server.

Run /bot [-h|--help] to print this help message.

See details below for each supported subcommand.

run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]

Launch build/test pipelines. All previously running jobs will be killed.

--reuse-test (optional)pipeline-id (OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.

--disable-reuse-test (OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.

--disable-fail-fast (OPTIONAL) : Disable fail fast on build/tests/infra failures.

--skip-test (OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.

--stage-list "A10-PyTorch-1, xxx" (OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.

--gpu-type "A30, H100_PCIe" (OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.

--test-backend "pytorch, cpp" (OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.

--only-multi-gpu-test (OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.

--disable-multi-gpu-test (OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.

--add-multi-gpu-test (OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.

--post-merge (OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.

--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" (OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".

--detailed-log (OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.

--debug (OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in the stage-list parameter to access the appropriate container environment. Note: Does NOT update GitHub check status.

For guidance on mapping tests to stage names, see docs/source/reference/ci-overview.md
and the scripts/test_to_stage_mapping.py helper.

kill

kill

Kill all running builds associated with pull request.

skip

skip --comment COMMENT

Skip testing for latest commit on pull request. --comment "Reason for skipping build/test" is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

reuse-pipeline

reuse-pipeline

Reuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

@coderabbitai
Copy link
Contributor

coderabbitai bot commented Oct 27, 2025

📝 Walkthrough

Walkthrough

The changes centralize the AlltoallMethodType enum into a shared utility module and introduce alltoall method selection logic across two fused MoE implementations. Each implementation gains a method to select the alltoall type based on environment variables and model configuration, conditional initialization for different method types (with MNNVL currently supported), and propagation of a use_low_precision_combine flag throughout the pipeline.

Changes

Cohort / File(s) Change Summary
Enum centralization and definition
tensorrt_llm/_torch/utils.py, tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py
Moved AlltoallMethodType IntEnum definition from fused_moe_wide_ep.py to utils.py with members NotEnabled, MNNVL, DeepEP, DeepEPLowLatency. Updated fused_moe_wide_ep.py to import from centralized location.
Alltoall method selection logic
tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py, tensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.py
Added select_alltoall_method_type() method controlled by TRTLLM_FORCE_ALLTOALL_METHOD environment variable. Introduced alltoall_method_type attribute and use_low_precision_combine flag. Modified initialization to conditionally branch on method type (MNNVL initializes MnnvlMemory; DeepEP/DeepEPLowLatency raise NotImplementedError). Updated enable_alltoall property and forward_* methods to propagate the new flag. Added logger imports and info-level logging.

Sequence Diagram

sequenceDiagram
    participant Init as Module __init__
    participant Env as Environment
    participant Select as select_alltoall_method_type()
    participant Model as model_config
    participant Memory as MnnvlMemory
    participant Forward as forward_*()
    participant Kernel as fused_moe_kernel

    Init->>Env: Check TRTLLM_FORCE_ALLTOALL_METHOD
    Init->>Select: Call method selector
    Select->>Env: Fetch override if set
    Select->>Model: Read routing/combine conditions
    Select->>Select: Determine type (MNNVL/DeepEP/etc.)
    Select-->>Init: Return alltoall_method_type
    
    alt Method Type = MNNVL
        Init->>Memory: Initialize MnnvlMemory
        Memory-->>Init: Provide workspaces
        Init->>Model: Read use_low_precision_moe_combine
        Init-->>Init: Set use_low_precision_combine flag
    else Method Type = DeepEP/DeepEPLowLatency
        Init-->>Init: Raise NotImplementedError
    else Other/Unknown
        Init-->>Init: Raise NotImplementedError
    end
    
    Forward->>Kernel: Pass use_low_precision_combine flag
    Kernel-->>Forward: Execute with precision setting
Loading

Estimated code review effort

🎯 3 (Moderate) | ⏱️ ~20 minutes

  • Areas requiring extra attention:
    • Logic in select_alltoall_method_type() methods: verify environment variable handling and fallback logic across both implementations are consistent
    • Conditional initialization paths in both modules: ensure proper error handling for unsupported method types (DeepEP/DeepEPLowLatency)
    • Integration of use_low_precision_combine flag across initialization, forward methods, and kernel calls in both implementations
    • Correctness of the centralized AlltoallMethodType enum migration and all import updates

Pre-merge checks and finishing touches

❌ Failed checks (2 warnings)
Check name Status Explanation Resolution
Description Check ⚠️ Warning The PR description is incomplete and fails to meet the repository's template requirements. While the PR contains the template structure, the critical sections—"Description" and "Test Coverage"—are left entirely empty with only comment headers present and no substantive information provided. The description lacks any explanation of the issue being addressed, the solution implemented, or which tests safeguard these changes. The PR Checklist items also remain unchecked, suggesting the submitter did not complete the required review before submission. Please fill in the PR description by providing: (1) a brief explanation of the issue and the solution in the "Description" section, (2) a clear list of relevant tests that safeguard the changes in the "Test Coverage" section, and (3) confirmation that the PR Checklist items have been reviewed and checked as appropriate. This information is essential for reviewers to understand the scope and validation of the changes.
Docstring Coverage ⚠️ Warning Docstring coverage is 25.00% which is insufficient. The required threshold is 80.00%. You can run @coderabbitai generate docstrings to improve docstring coverage.
✅ Passed checks (1 passed)
Check name Status Explanation
Title Check ✅ Passed The PR title "[TRTLLM-8827] [feat] Enable low precision alltoall for Cutlass and TRTLLMGen backends" clearly and directly matches the primary changes in the pull request. The summary shows modifications to both fused_moe_cutlass.py and fused_moe_trtllm_gen.py files that add support for low precision alltoall functionality, a new use_low_precision_combine flag, and alltoall method selection logic. The title follows the required format with a JIRA ticket, feature type tag, and concise description of the main change.
✨ Finishing touches
  • 📝 Generate docstrings
🧪 Generate unit tests (beta)
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 4

Caution

Some comments are outside the diff and can’t be posted inline due to platform limitations.

⚠️ Outside diff range comments (3)
tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py (1)

1-5: Add NVIDIA Apache-2.0 header (2025) at file top

Required by coding guidelines; currently missing.

(Use the same header block shown in utils.py.)

tensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.py (1)

1-10: Add NVIDIA Apache-2.0 header (2025) at file top

Required by coding guidelines; currently missing.

(Use the same header block shown in utils.py.)

tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py (1)

1-10: Add NVIDIA Apache-2.0 header (2025) at file top

Required by coding guidelines; currently missing.

(Use the same header block shown in utils.py.)

🧹 Nitpick comments (7)
tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py (3)

175-181: Log key should be class-specific to avoid suppression

Using the same info_once key across classes can hide messages. Prefer a per-class key.

-        logger.info_once(
-            f"{self.__class__.__name__} selects alltoall_method_type {self.alltoall_method_type!r}",
-            key="alltoall_method_type")
+        logger.info_once(
+            f"{self.__class__.__name__} selects alltoall_method_type {self.alltoall_method_type!r}",
+            key=f"{self.__class__.__name__}.alltoall_method_type")

247-296: Harden env override parsing; avoid KeyError on typos

AlltoallMethodType[...] raises KeyError for invalid TRTLLM_FORCE_ALLTOALL_METHOD values. Catch and log for safer behavior.

-        all2all_method_type = os.environ.get("TRTLLM_FORCE_ALLTOALL_METHOD")
-        if all2all_method_type is not None:
-            return AlltoallMethodType[all2all_method_type]
+        all2all_method_type = os.environ.get("TRTLLM_FORCE_ALLTOALL_METHOD")
+        if all2all_method_type is not None:
+            try:
+                return AlltoallMethodType[all2all_method_type]
+            except KeyError:
+                logger.warning(
+                    f"Invalid TRTLLM_FORCE_ALLTOALL_METHOD='{all2all_method_type}'. "
+                    f"Valid: {[e.name for e in AlltoallMethodType]}. Falling back to auto selection.")

330-358: Potentially heavy mask allocation in low-latency adapter

The expert-by-token boolean mask can be large. Consider computing indices without materializing a full mask to reduce memory traffic.

tensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.py (2)

145-171: Env override parsing: guard against invalid values

Same concern as WideEPMoE; catch KeyError and warn to avoid hard crashes on typos.

-        all2all_method_type = os.environ.get("TRTLLM_FORCE_ALLTOALL_METHOD")
-        if all2all_method_type is not None:
-            if AlltoallMethodType[all2all_method_type] in [
+        all2all_method_type = os.environ.get("TRTLLM_FORCE_ALLTOALL_METHOD")
+        if all2all_method_type is not None:
+            try:
+                forced = AlltoallMethodType[all2all_method_type]
+            except KeyError:
+                logger.warning(
+                    f"Invalid TRTLLM_FORCE_ALLTOALL_METHOD='{all2all_method_type}'. "
+                    f"Valid: {[e.name for e in AlltoallMethodType]}. Falling back to auto selection.")
+            else:
+                if forced in [
                     AlltoallMethodType.DeepEP,
                     AlltoallMethodType.DeepEPLowLatency
-            ]:
-                raise NotImplementedError(
-                    "DeepEP and DeepEPLowLatency are not supported for CutlassFusedMoE yet"
-                )
-            return AlltoallMethodType[all2all_method_type]
+                ]:
+                    raise NotImplementedError(
+                        "DeepEP and DeepEPLowLatency are not supported for TRTLLMGenFusedMoE yet"
+                    )
+                return forced

117-119: Unique logger key to avoid cross-class suppression

Use a class-specific key.

-        logger.info_once(
-            f"{self.__class__.__name__} selects alltoall_method_type {self.alltoall_method_type!r}",
-            key="alltoall_method_type")
+        logger.info_once(
+            f"{self.__class__.__name__} selects alltoall_method_type {self.alltoall_method_type!r}",
+            key=f"{self.__class__.__name__}.alltoall_method_type")
tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py (2)

147-149: Unique logger key to avoid cross-class suppression

Use a class-specific key.

-        logger.info_once(
-            f"{self.__class__.__name__} selects alltoall_method_type {self.alltoall_method_type!r}",
-            key="alltoall_method_type")
+        logger.info_once(
+            f"{self.__class__.__name__} selects alltoall_method_type {self.alltoall_method_type!r}",
+            key=f"{self.__class__.__name__}.alltoall_method_type")

211-237: Harden env override parsing; avoid KeyError on typos

Same suggestion as in TRTLLMGen/WideEPMoE.

-        all2all_method_type = os.environ.get("TRTLLM_FORCE_ALLTOALL_METHOD")
-        if all2all_method_type is not None:
-            if AlltoallMethodType[all2all_method_type] in [
+        all2all_method_type = os.environ.get("TRTLLM_FORCE_ALLTOALL_METHOD")
+        if all2all_method_type is not None:
+            try:
+                forced = AlltoallMethodType[all2all_method_type]
+            except KeyError:
+                logger.warning(
+                    f"Invalid TRTLLM_FORCE_ALLTOALL_METHOD='{all2all_method_type}'. "
+                    f"Valid: {[e.name for e in AlltoallMethodType]}. Falling back to auto selection.")
+            else:
+                if forced in [
                     AlltoallMethodType.DeepEP,
                     AlltoallMethodType.DeepEPLowLatency
-            ]:
-                raise NotImplementedError(
-                    "DeepEP and DeepEPLowLatency are not supported for CutlassFusedMoE yet"
-                )
-            return AlltoallMethodType[all2all_method_type]
+                ]:
+                    raise NotImplementedError(
+                        "DeepEP and DeepEPLowLatency are not supported for CutlassFusedMoE yet"
+                    )
+                return forced
📜 Review details

Configuration used: Path: .coderabbit.yaml

Review profile: CHILL

Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 0a0f93d and c4c783c.

📒 Files selected for processing (4)
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py (4 hunks)
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.py (3 hunks)
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py (1 hunks)
  • tensorrt_llm/_torch/utils.py (2 hunks)
🧰 Additional context used
📓 Path-based instructions (3)
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Use only spaces, no tabs; indent with 4 spaces.

Files:

  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.py
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py
  • tensorrt_llm/_torch/utils.py
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py
**/*.py

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.py: Python code must target Python 3.8+.
Indent Python code with 4 spaces; do not use tabs.
Maintain module namespace when importing; prefer 'from package.subpackage import foo' then 'foo.SomeClass()' instead of importing the class directly.
Python filenames should be snake_case (e.g., some_file.py).
Python classes use PascalCase names.
Functions and methods use snake_case names.
Local variables use snake_case; prefix 'k' for variables that start with a number (e.g., k_99th_percentile).
Global variables use upper SNAKE_CASE prefixed with 'G' (e.g., G_MY_GLOBAL).
Constants use upper SNAKE_CASE (e.g., MY_CONSTANT).
Avoid shadowing variables from an outer scope.
Initialize all externally visible members of a class in the constructor.
Prefer docstrings for interfaces that may be used outside a file; comments for in-function or file-local interfaces.
Use Google-style docstrings for classes and functions (Sphinx-parsable).
Document attributes and variables inline so they render under the class/function docstring.
Avoid reflection when a simpler, explicit approach suffices (e.g., avoid dict(**locals()) patterns).
In try/except, catch the most specific exceptions possible.
For duck-typing try/except, keep the try body minimal and use else for the main logic.

Files:

  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.py
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py
  • tensorrt_llm/_torch/utils.py
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py
**/*.{cpp,cxx,cc,h,hpp,hh,hxx,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Prepend the NVIDIA Apache-2.0 copyright header with current year to the top of all source files (e.g., .cpp, .h, .cu, .py).

Files:

  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.py
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py
  • tensorrt_llm/_torch/utils.py
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py
🧬 Code graph analysis (3)
tensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.py (6)
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py (1)
  • fp4_block_scale_fake_output_without_finalize (308-331)
tensorrt_llm/_torch/utils.py (2)
  • AlltoallMethodType (320-328)
  • Fp4QuantizedTensor (99-106)
tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py (2)
  • select_alltoall_method_type (211-236)
  • enable_alltoall (239-242)
tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py (2)
  • select_alltoall_method_type (248-296)
  • enable_alltoall (305-308)
tensorrt_llm/logger.py (1)
  • info_once (141-142)
tensorrt_llm/_mnnvl_utils.py (4)
  • MnnvlMemory (53-338)
  • MnnvlMoe (352-624)
  • get_moe_workspaces (360-376)
  • supports_mnnvl (332-338)
tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py (1)
tensorrt_llm/_torch/utils.py (2)
  • AlltoallMethodType (320-328)
  • Fp4QuantizedTensor (99-106)
tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py (4)
tensorrt_llm/_torch/utils.py (1)
  • AlltoallMethodType (320-328)
tensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.py (2)
  • select_alltoall_method_type (145-170)
  • enable_alltoall (173-176)
tensorrt_llm/logger.py (1)
  • info_once (141-142)
tensorrt_llm/_mnnvl_utils.py (6)
  • MnnvlMemory (53-338)
  • initialize (91-100)
  • MnnvlMoe (352-624)
  • get_moe_workspaces (360-376)
  • get_moe_prepare_workspace (379-390)
  • supports_mnnvl (332-338)
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
  • GitHub Check: Pre-commit Check
🔇 Additional comments (3)
tensorrt_llm/_torch/utils.py (1)

319-328: Centralized AlltoallMethodType looks good

Enum values are explicit and stable for cross-module use. No issues found.

tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py (1)

199-211: Confirm NVSHMEM_QP_DEPTH timing relative to NVSHMEM initialization

Setting NVSHMEM_QP_DEPTH after NVSHMEM initializes may be ignored. Ensure this executes before any NVSHMEM init in the process.

Please verify initialization order in runtime setup; if needed, document and/or set this earlier (e.g., in a launcher).

tensorrt_llm/_torch/modules/fused_moe/fused_moe_trtllm_gen.py (1)

114-119: Blocker: select_alltoall_method_type call signature mismatch

Method takes only self, but call passes 4 args -> runtime TypeError.

Apply this diff:

-        self.alltoall_method_type = self.select_alltoall_method_type(
-            model_config.mapping, routing_method.experts_per_token, dtype,
-            model_config.use_cuda_graph)
+        self.alltoall_method_type = self.select_alltoall_method_type()

Likely an incorrect or invalid review comment.

@kaiyux kaiyux requested a review from a team as a code owner October 27, 2025 05:58
@kaiyux
Copy link
Member Author

kaiyux commented Oct 27, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #22632 [ run ] triggered by Bot. Commit: 45784e3

@tensorrt-cicd
Copy link
Collaborator

PR_Github #22632 [ run ] completed with state SUCCESS. Commit: 45784e3
/LLM/main/L0_MergeRequest_PR pipeline #17059 completed with status: 'FAILURE'

@kaiyux
Copy link
Member Author

kaiyux commented Oct 27, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #22665 [ run ] triggered by Bot. Commit: 45784e3

@tensorrt-cicd
Copy link
Collaborator

PR_Github #22665 [ run ] completed with state SUCCESS. Commit: 45784e3
/LLM/main/L0_MergeRequest_PR pipeline #17087 completed with status: 'SUCCESS'

kaiyux and others added 4 commits October 28, 2025 04:06
Signed-off-by: Kaiyu Xie <[email protected]>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
Signed-off-by: Kaiyu Xie <[email protected]>
Signed-off-by: Kaiyu Xie <[email protected]>
@kaiyux kaiyux force-pushed the user/kaiyu/alltoall branch from 45784e3 to 1ffaaae Compare October 28, 2025 11:07
Signed-off-by: Kaiyu Xie <[email protected]>
@kaiyux
Copy link
Member Author

kaiyux commented Oct 28, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #22764 [ run ] triggered by Bot. Commit: be43424

@tensorrt-cicd
Copy link
Collaborator

PR_Github #22764 [ run ] completed with state SUCCESS. Commit: be43424
/LLM/main/L0_MergeRequest_PR pipeline #17166 completed with status: 'SUCCESS'

@kaiyux kaiyux merged commit 227c288 into NVIDIA:main Oct 28, 2025
5 checks passed
@kaiyux kaiyux deleted the user/kaiyu/alltoall branch October 28, 2025 23:56
dominicshanshan pushed a commit to dominicshanshan/TensorRT-LLM that referenced this pull request Nov 1, 2025
…TLLMGen backends (NVIDIA#8675)

Signed-off-by: Kaiyu Xie <[email protected]>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
dominicshanshan pushed a commit to dominicshanshan/TensorRT-LLM that referenced this pull request Nov 3, 2025
…TLLMGen backends (NVIDIA#8675)

Signed-off-by: Kaiyu Xie <[email protected]>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
dominicshanshan pushed a commit to dominicshanshan/TensorRT-LLM that referenced this pull request Nov 3, 2025
…TLLMGen backends (NVIDIA#8675)

Signed-off-by: Kaiyu Xie <[email protected]>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
dominicshanshan pushed a commit to dominicshanshan/TensorRT-LLM that referenced this pull request Nov 3, 2025
…TLLMGen backends (NVIDIA#8675)

Signed-off-by: Kaiyu Xie <[email protected]>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

6 participants