Skip to content

Conversation

@Wanli-Jiang
Copy link
Collaborator

@Wanli-Jiang Wanli-Jiang commented Aug 22, 2025

This PR is copied from #6817, which can fix the accuracy issue in phi4-mm when using LoRA.

Summary by CodeRabbit

  • New Features

    • Added LoRA utilities to simplify loading and configuration, including a helper to generate LoRA requests per modality.
    • Introduced an option to disable a specific LoRA weight swap for improved compatibility (defaults to enabled).
    • Auto-completes missing attention Q/K/V targets and provides a default module mapping.
    • Updated multimodal model config to use the new MLP target and mapping.
  • Tests

    • Adjusted integration tests and performance config to reflect updated multimodal outputs and the optional weight-swap flag.

Description

Test Coverage

GitHub Bot Help

/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...

Provide a user friendly way for developers to interact with a Jenkins server.

Run /bot [-h|--help] to print this help message.

See details below for each supported subcommand.

run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]

Launch build/test pipelines. All previously running jobs will be killed.

--reuse-test (optional)pipeline-id (OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.

--disable-reuse-test (OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.

--disable-fail-fast (OPTIONAL) : Disable fail fast on build/tests/infra failures.

--skip-test (OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.

--stage-list "A10-PyTorch-1, xxx" (OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.

--gpu-type "A30, H100_PCIe" (OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.

--test-backend "pytorch, cpp" (OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.

--only-multi-gpu-test (OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.

--disable-multi-gpu-test (OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.

--add-multi-gpu-test (OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.

--post-merge (OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.

--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" (OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".

--detailed-log (OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.

--debug (OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in the stage-list parameter to access the appropriate container environment. Note: Does NOT update GitHub check status.

For guidance on mapping tests to stage names, see docs/source/reference/ci-overview.md
and the scripts/test_to_stage_mapping.py helper.

kill

kill

Kill all running builds associated with pull request.

skip

skip --comment COMMENT

Skip testing for latest commit on pull request. --comment "Reason for skipping build/test" is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

reuse-pipeline

reuse-pipeline

Reuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

@coderabbitai
Copy link
Contributor

coderabbitai bot commented Aug 22, 2025

Warning

Rate limit exceeded

@Wanli-Jiang has exceeded the limit for the number of commits or files that can be reviewed per hour. Please wait 9 minutes and 34 seconds before requesting another review.

⌛ How to resolve this issue?

After the wait time has elapsed, a review can be triggered using the @coderabbitai review command as a PR comment. Alternatively, push new commits to this PR.

We recommend that you space out your commits to avoid hitting the rate limit.

🚦 How do rate limits work?

CodeRabbit enforces hourly rate limits for each developer per organization.

Our paid plans have higher rate limits than the trial, open-source and free plans. In all cases, we re-allow further reviews after a brief timeout.

Please see our FAQ for further information.

📥 Commits

Reviewing files that changed from the base of the PR and between 78dc18b and 7e4974b.

📒 Files selected for processing (7)
  • tensorrt_llm/_torch/models/modeling_phi4mm.py (1 hunks)
  • tensorrt_llm/_torch/pyexecutor/_util.py (1 hunks)
  • tensorrt_llm/_torch/pyexecutor/model_engine.py (1 hunks)
  • tensorrt_llm/_torch/pyexecutor/resource_manager.py (1 hunks)
  • tensorrt_llm/lora_manager.py (4 hunks)
  • tests/integration/defs/perf/pytorch_model_config.py (1 hunks)
  • tests/integration/defs/test_e2e.py (1 hunks)
📝 Walkthrough

Walkthrough

Adds a configurable flag to control swapping of gate_up_proj.lora_B.weight, updates Phi4MM LoRA targets/mappings (renaming mlp_h_to_4hmlp_gate_up), introduces a lora_helper module with LoraConfig/utilities, and propagates the new flag through pyexecutor/resource manager and tests.

Changes

Cohort / File(s) Summary
Phi4MM LoRA config updates
tensorrt_llm/_torch/models/modeling_phi4mm.py
Removed lora_dir, replaced mlp_h_to_4h with mlp_gate_up, updated mapping to "mlp_gate_up": "gate_up_proj", added swap_gate_up_proj_lora_b_weight=False, and added static lora_request(...).
LoRA helpers & config
tensorrt_llm/lora_helper.py
New helper module: LoraConfig dataclass (includes swap_gate_up_proj_lora_b_weight), use_lora, get_missing_qkv_modules_from_lora_modules, and default TRTL↔HF module map.
LoRA manager updates
tensorrt_llm/lora_manager.py
Added swap_gate_up_proj_lora_b_weight to LoraConfig and LoraModelConfig; preprocess_lora_weights now accepts model_config and conditionalizes the gate_up swap on the flag.
PyExecutor wiring
tensorrt_llm/_torch/pyexecutor/model_engine.py
tensorrt_llm/_torch/pyexecutor/_util.py
tensorrt_llm/_torch/pyexecutor/resource_manager.py
PyTorchModelEngine.set_lora_model_config gains swap_gate_up_proj_lora_b_weight param (default True); callers and PeftCacheManager now pass the flag into LoraModelConfig and into set_lora_model_config.
Perf config changes
tests/integration/defs/perf/pytorch_model_config.py
For phi_4_multimodal_instruct: use mlp_gate_up in targets and mapping, set swap_gate_up_proj_lora_b_weight=False.
Test expectation updates
tests/integration/defs/test_e2e.py
Updated expected keywords for multimodal Phi4MM image and image_audio test cases.

Sequence Diagram(s)

sequenceDiagram
  autonumber
  actor Caller as Caller (tests/app)
  participant Util as _util.create_py_executor_instance
  participant Engine as PyTorchModelEngine
  participant RM as ResourceManager/PeftCacheManager
  participant LM as LoraManager
  participant MC as LoraModelConfig

  Caller->>Util: build engine with lora_config
  Util->>Engine: set_lora_model_config(targets, map, swap_flag)
  Engine->>MC: LoraModelConfig(..., swap_flag)
  Engine-->>Util: configured
  Util->>RM: init PeftCacheManager(with MC)
  RM->>LM: load_from_hf(..., model_config=MC)
  LM->>LM: preprocess_lora_weights(lora_model, MC)
  alt swap_flag == True
    note right of LM #DFF2BF: perform swap of gate_up_proj.lora_B.weight
  else swap_flag == False
    note right of LM #FFD6D6: skip swap
  end
  LM-->>RM: lora weights loaded
Loading

Estimated code review effort

🎯 3 (Moderate) | ⏱️ ~25 minutes

Possibly related PRs

Suggested reviewers

  • amitz-nv
  • venkywonka
  • shaharmor98
  • amukkara
✨ Finishing Touches
  • 📝 Generate Docstrings
🧪 Generate unit tests
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share
🪧 Tips

Chat

There are 3 ways to chat with CodeRabbit:

  • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
    • I pushed a fix in commit <commit_id>, please review it.
    • Open a follow-up GitHub issue for this discussion.
  • Files and specific lines of code (under the "Files changed" tab): Tag @coderabbitai in a new review comment at the desired location with your query.
  • PR comments: Tag @coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
    • @coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.
    • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.

Support

Need help? Create a ticket on our support page for assistance with any issues or questions.

CodeRabbit Commands (Invoked using PR/Issue comments)

Type @coderabbitai help to get the list of available commands.

Other keywords and placeholders

  • Add @coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.
  • Add @coderabbitai summary to generate the high-level summary at a specific location in the PR description.
  • Add @coderabbitai or @coderabbitai title anywhere in the PR title to generate the title automatically.

Status, Documentation and Community

  • Visit our Status Page to check the current availability of CodeRabbit.
  • Visit our Documentation for detailed information on how to use CodeRabbit.
  • Join our Discord Community to get help, request features, and share feedback.
  • Follow us on X/Twitter for updates and announcements.

@Wanli-Jiang Wanli-Jiang force-pushed the user/williamj/fix-phi4mm-lora-rc branch from f4adb25 to 78dc18b Compare August 22, 2025 06:17
@Wanli-Jiang Wanli-Jiang marked this pull request as ready for review August 22, 2025 06:21
@Wanli-Jiang Wanli-Jiang requested a review from a team as a code owner August 22, 2025 06:21
@Wanli-Jiang
Copy link
Collaborator Author

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #16136 [ run ] triggered by Bot

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

Caution

Some comments are outside the diff and can’t be posted inline due to platform limitations.

⚠️ Outside diff range comments (1)
tensorrt_llm/lora_helper.py (1)

82-103: Duplicate LoraConfig class defined in two modules — unify to a single type to avoid runtime confusion.

Having LoraConfig in both tensorrt_llm.lora_manager and tensorrt_llm.lora_helper is error-prone (type checks, serialization, defaults can diverge). Prefer a single canonical class, and re-export it from helpers for convenience.

Apply this minimal aliasing to remove the duplicate definition and re-use the manager’s class:

-from dataclasses import dataclass, field
-from typing import Dict, List, Optional
-
-from ._utils import DictConversion
+from dataclasses import dataclass, field
+from typing import Dict, List, Optional
+
+from ._utils import DictConversion
+from .lora_manager import LoraConfig as _ManagerLoraConfig
@@
-@dataclass
-class LoraConfig(DictConversion):
-    lora_dir: List[str] = field(default_factory=list)
-    lora_ckpt_source: str = "hf"
-    max_lora_rank: int = 64
-    lora_target_modules: List[str] = field(default_factory=list)
-    trtllm_modules_to_hf_modules: Dict[str, str] = field(default_factory=dict)
-    max_loras: Optional[int] = None
-    max_cpu_loras: Optional[int] = None
-    swap_gate_up_proj_lora_b_weight: bool = True
-
-    def __post_init__(self):
-        assert self.lora_ckpt_source in [
-            "hf", "nemo"
-        ], (f"lora_ckpt_source must be one of 'hf' or 'nemo', got {self.lora_ckpt_source}"
-            )
-
-    @property
-    def missing_qkv_modules(self) -> List[str]:
-        return get_missing_qkv_modules_from_lora_modules(
-            self.lora_target_modules)
+# Re-export the canonical LoraConfig to avoid duplication and divergence.
+LoraConfig = _ManagerLoraConfig

If keeping a helper-only facade is required for public API stability, re-exporting preserves import paths (e.g., from tensorrt_llm.lora_helper import LoraConfig) without duplicating implementation.

🧹 Nitpick comments (5)
tensorrt_llm/lora_manager.py (1)

1031-1042: Make the swap robust: avoid mutating dict during iteration, assert even rows, and drop unnecessary clone.

  • Mutating lora_model[key] while iterating lora_model.items() can be fragile. Iterate over a materialized list instead.
  • Assert row count is even before splitting; otherwise a silent half-split can corrupt weights.
  • The extra .clone() is not needed; torch.cat allocates a fresh tensor.

Apply this diff to harden the preprocessing:

-        def preprocess_lora_weights(lora_model, model_config):
-            # Swap weights of gate_up_proj
-            if getattr(model_config, "swap_gate_up_proj_lora_b_weight", True):
-                for key, value in lora_model.items():
-                    if "gate_up_proj.lora_B.weight" in key:
-                        original_weights = value.contiguous().clone()
-                        half_split = original_weights.shape[0] // 2
-                        first_half = original_weights[:half_split, :]
-                        second_half = original_weights[half_split:, :]
-                        value = torch.cat((second_half, first_half), dim=0)
-                        lora_model[key] = value
-            return lora_model
+        def preprocess_lora_weights(lora_model, model_config):
+            # Swap rows for gate_up_proj.lora_B.weight (gate | up ordering)
+            if getattr(model_config, "swap_gate_up_proj_lora_b_weight", True):
+                for key, value in list(lora_model.items()):
+                    if "gate_up_proj.lora_B.weight" in key:
+                        w = value.contiguous()
+                        rows = w.shape[0]
+                        assert rows % 2 == 0, (
+                            f"Expected even row count for {key}, got {rows}"
+                        )
+                        half = rows // 2
+                        first_half = w[:half, :]
+                        second_half = w[half:, :]
+                        swapped = torch.cat((second_half, first_half), dim=0)
+                        lora_model[key] = swapped
+            return lora_model
tensorrt_llm/lora_helper.py (3)

1-15: Update SPDX year range to include 2025.

Repo guideline says to prepend NVIDIA copyright header (current year). Please bump to 2025.

Apply:

-# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 2022-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

22-41: Avoid duplicating “missing QKV” logic; reuse the manager’s single source of truth.

This function mirrors LoraManager.get_missing_qkv_modules. Maintaining two implementations risks divergence.

Consider importing and delegating:

-from typing import Dict, List, Optional
+from typing import Dict, List, Optional
+from .lora_manager import LoraManager
@@
-def get_missing_qkv_modules_from_lora_modules(
-        lora_target_modules: List[str]) -> List[str]:
+def get_missing_qkv_modules_from_lora_modules(
+        lora_target_modules: List[str]) -> List[str]:
@@
-    missing_qkv_modules = []
-    if any(x in lora_target_modules for x in ["attn_q", "attn_k", "attn_v"]):
-        for lora_module in ["attn_q", "attn_k", "attn_v"]:
-            if lora_module not in lora_target_modules:
-                missing_qkv_modules.append(lora_module)
-    if any(x in lora_target_modules
-           for x in ["cross_attn_q", "cross_attn_k", "cross_attn_v"]):
-        for lora_module in ["cross_attn_q", "cross_attn_k", "cross_attn_v"]:
-            if lora_module not in lora_target_modules:
-                missing_qkv_modules.append(lora_module)
-    return missing_qkv_modules
+    return LoraManager.get_missing_qkv_modules(lora_target_modules)

43-59: De-duplicate default module mapping; import from a single location.

A second copy of the TRT-LLM↔HF mapping is hard to keep in sync (e.g., new modules like mlp_gate_up). Prefer re-exporting the mapping from lora_manager.py.

For example:

-from ._utils import DictConversion
+from ._utils import DictConversion
+from .lora_manager import get_default_trtllm_modules_to_hf_modules as _default_map
@@
-def get_default_trtllm_modules_to_hf_modules():
-    """Get default mapping from TensorRT-LLM module names to HuggingFace module names."""
-    return {
-        "attn_q": "q_proj",
-        "attn_k": "k_proj",
-        "attn_v": "v_proj",
-        "attn_dense": "o_proj",
-        "mlp_h_to_4h": "gate_proj",
-        "mlp_4h_to_h": "down_proj",
-        "mlp_gate": "up_proj",
-        "mlp_gate_up": "gate_up_proj",
-        "moe_h_to_4h": "w1",
-        "moe_4h_to_h": "w2",
-        "moe_gate": "w3",
-        "moe_router": "gate",
-    }
+def get_default_trtllm_modules_to_hf_modules():
+    """Get default mapping from TensorRT-LLM module names to HuggingFace module names."""
+    return _default_map()
tensorrt_llm/_torch/models/modeling_phi4mm.py (1)

265-286: LoRA requests per modality — LGTM with a minor suggestion.

The static helper returns consistent LoRARequests for image/audio modalities. Minor nit: use _ for the throwaway loop variable.

Apply:

-                ) for i in range(num_requests)
+                ) for _ in range(num_requests)
📜 Review details

Configuration used: Path: .coderabbit.yaml

Review profile: CHILL

Plan: Pro

💡 Knowledge Base configuration:

  • MCP integration is disabled by default for public repositories
  • Jira integration is disabled by default for public repositories
  • Linear integration is disabled by default for public repositories

You can enable these sources in your CodeRabbit configuration.

📥 Commits

Reviewing files that changed from the base of the PR and between f4adb25 and 78dc18b.

📒 Files selected for processing (8)
  • tensorrt_llm/_torch/models/modeling_phi4mm.py (1 hunks)
  • tensorrt_llm/_torch/pyexecutor/_util.py (1 hunks)
  • tensorrt_llm/_torch/pyexecutor/model_engine.py (1 hunks)
  • tensorrt_llm/_torch/pyexecutor/resource_manager.py (1 hunks)
  • tensorrt_llm/lora_helper.py (1 hunks)
  • tensorrt_llm/lora_manager.py (4 hunks)
  • tests/integration/defs/perf/pytorch_model_config.py (1 hunks)
  • tests/integration/defs/test_e2e.py (1 hunks)
🚧 Files skipped from review as they are similar to previous changes (4)
  • tensorrt_llm/_torch/pyexecutor/model_engine.py
  • tensorrt_llm/_torch/pyexecutor/_util.py
  • tensorrt_llm/_torch/pyexecutor/resource_manager.py
  • tests/integration/defs/perf/pytorch_model_config.py
🧰 Additional context used
📓 Path-based instructions (2)
**/*.py

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.py: Python code must target Python 3.8+
Python indentation: 4 spaces, no tabs
Maintain module namespace in imports (from package.subpackage import foo; then use foo.SomeClass())
Python file names use snake_case
Python class names use PascalCase
Python functions/methods and local variables use snake_case; variables starting with a number get k_ prefix (e.g., k_99th_percentile)
Global variables use G_ prefixed UPPER_SNAKE_CASE (e.g., G_MY_GLOBAL)
Constants use UPPER_SNAKE_CASE in Python
Avoid shadowing variables from outer scopes in Python
Initialize all externally visible members of a Python class in init
Prefer docstrings for interfaces used outside a file; comments for local code
Use Google-style docstrings for classes and functions (Sphinx-parsable)
Document attributes/variables inline with short docstrings
Avoid reflection when simple alternatives exist (e.g., prefer explicit parameters over dict(**locals()))
In try/except, catch the narrowest exceptions possible
For duck-typing with try/except, keep try body minimal and put logic in else

Files:

  • tensorrt_llm/lora_manager.py
  • tensorrt_llm/lora_helper.py
  • tests/integration/defs/test_e2e.py
  • tensorrt_llm/_torch/models/modeling_phi4mm.py
**/*.{cpp,cxx,cc,cu,h,hpp,hxx,hh,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Prepend NVIDIA copyright header (current year) to all source files

Files:

  • tensorrt_llm/lora_manager.py
  • tensorrt_llm/lora_helper.py
  • tests/integration/defs/test_e2e.py
  • tensorrt_llm/_torch/models/modeling_phi4mm.py
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
  • GitHub Check: Pre-commit Check
🔇 Additional comments (7)
tensorrt_llm/lora_manager.py (2)

1053-1053: HF LoRA path preprocess hook — LGTM.

The guarded call to preprocess_lora_weights(lora_model, model_config) keeps HF-loading compatible across models while allowing Phi4MM to disable swapping.


244-244: swap_gate_up_proj_lora_b_weight flag fully propagated and verified
All instantiations, defaults, mappings, and tests correctly include or reference the new swap_gate_up_proj_lora_b_weight flag. No missing call sites or mappings were found.

tensorrt_llm/lora_helper.py (1)

61-80: LoRA dispatcher wrapper — LGTM.

The thin wrapper keeps call sites simple and preserves the existing public API.

tests/integration/defs/test_e2e.py (2)

2489-2491: Updated image expected keywords for Phi4MM — LGTM.

The new tokens reflect the revised LoRA targets/mappings and match the updated modality behavior.


2497-2498: Updated image_audio expected keywords for Phi4MM — LGTM.

Consistent with the modality handling changes.

tensorrt_llm/_torch/models/modeling_phi4mm.py (2)

259-261: Disable swap of gate_up_proj.lora_B.weight for Phi4MM — correct model-specific override.

Default is True globally; Phi4MM sets it to False here, which matches the intended accuracy fix.


246-257: ✅ Confirmed mlp_gate_up registration and mapping
The LoRA target modules and mappings in modeling_phi4mm.py correctly use "mlp_gate_up""gate_up_proj", and we’ve verified that LORA_MODULE_IDS in lora_manager.py includes

  • "mlp_gate_up": 18

No further changes needed.

@Wanli-Jiang Wanli-Jiang force-pushed the user/williamj/fix-phi4mm-lora-rc branch from 78dc18b to c4791f9 Compare August 22, 2025 06:31
@Wanli-Jiang Wanli-Jiang force-pushed the user/williamj/fix-phi4mm-lora-rc branch from c4791f9 to 7e4974b Compare August 22, 2025 06:31
@Wanli-Jiang Wanli-Jiang changed the title [TRTLLM-6825][fix] Update lora for phi4-mm (#6817) [TRTLLM-6825][fix] Update lora for phi4-mm Aug 22, 2025
@Wanli-Jiang
Copy link
Collaborator Author

/bot run

@Wanli-Jiang Wanli-Jiang requested a review from chzblych August 22, 2025 06:35
@tensorrt-cicd
Copy link
Collaborator

PR_Github #16139 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #16136 [ run ] completed with state ABORTED

@tensorrt-cicd
Copy link
Collaborator

PR_Github #16139 [ run ] completed with state SUCCESS
/LLM/release-1.0/L0_MergeRequest_PR pipeline #260 completed with status: 'FAILURE'

@Wanli-Jiang
Copy link
Collaborator Author

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #16171 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #16171 [ run ] completed with state SUCCESS
/LLM/release-1.0/L0_MergeRequest_PR pipeline #263 completed with status: 'SUCCESS'

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants