-
Notifications
You must be signed in to change notification settings - Fork 1.8k
[https://nvbugs/5392414] [fix] Add customized default routing method #6818
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,268 @@ | ||
| /* | ||
| * Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. | ||
| * | ||
| * Licensed under the Apache License, Version 2.0 (the "License"); | ||
| * you may not use this file except in compliance with the License. | ||
| * You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
|
|
||
| #include "moeTopKFuncs.cuh" | ||
| #include "tensorrt_llm/common/cudaTypeUtils.cuh" | ||
| #include "tensorrt_llm/common/envUtils.h" | ||
| #include "tensorrt_llm/kernels/archCondition.h" | ||
| #include "tensorrt_llm/kernels/customMoeRoutingKernels.h" | ||
| #include <climits> // For INT_MAX | ||
| #include <cooperative_groups.h> | ||
| #include <cooperative_groups/reduce.h> | ||
| #include <cub/cub.cuh> | ||
| #include <cuda/std/limits> // For numeric_limits | ||
| #include <math.h> | ||
|
|
||
| namespace cg = cooperative_groups; | ||
| using namespace tensorrt_llm::common; | ||
|
|
||
| namespace tensorrt_llm::kernels | ||
| { | ||
|
|
||
| static constexpr int BLOCK_SIZE = 1024; | ||
| static constexpr int WARP_SIZE = 32; | ||
| static constexpr int WARPS_PER_BLOCK = BLOCK_SIZE / WARP_SIZE; | ||
|
|
||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||
|
|
||
| template <typename T> | ||
| __device__ T calcSoftmax(cg::thread_block_tile<WARP_SIZE> const& warp, T score, int32_t laneIdx, int32_t NumTopExperts) | ||
| { | ||
| T maxScore = T{-INFINITY}; | ||
| if (laneIdx < NumTopExperts) | ||
| { | ||
| maxScore = score >= maxScore ? score : maxScore; | ||
| } | ||
| maxScore = cg::reduce(warp, maxScore, cg::greater<T>()); | ||
|
|
||
ChristinaZ marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| float sumScore{0.f}; | ||
| float newScore; | ||
| // Get the summation of scores for each token | ||
| if (laneIdx < NumTopExperts) | ||
| { | ||
| newScore = static_cast<float>(score) - static_cast<float>(maxScore); | ||
| newScore = static_cast<float>(exp(newScore)); | ||
| sumScore += newScore; | ||
| } | ||
| sumScore = cg::reduce(warp, sumScore, cg::plus<float>()); | ||
|
|
||
| if (laneIdx < NumTopExperts) | ||
| { | ||
| score = static_cast<T>(newScore / sumScore); | ||
| } | ||
|
|
||
| return score; | ||
| } | ||
|
|
||
| template <typename DataType, int VecSize> | ||
| __device__ void calcSoftmax(cg::thread_block_tile<WARP_SIZE> const& warp, DataType (&scores)[VecSize]) | ||
| { | ||
| DataType maxScore = DataType{-INFINITY}; | ||
| DataType sumScore = DataType{0.f}; | ||
|
|
||
| // Get the max score for each token | ||
| #pragma unroll | ||
| for (int i = 0; i < VecSize; ++i) | ||
ChristinaZ marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| { | ||
| maxScore = scores[i] >= maxScore ? scores[i] : maxScore; | ||
| } | ||
| maxScore = cg::reduce(warp, maxScore, cg::greater<DataType>()); | ||
|
|
||
| // Get the summation of scores for each token | ||
| #pragma unroll | ||
| for (int i = 0; i < VecSize; ++i) | ||
| { | ||
| scores[i] = static_cast<DataType>(exp(scores[i] - maxScore)); | ||
| sumScore += scores[i]; | ||
| } | ||
| sumScore = cg::reduce(warp, sumScore, cg::plus<DataType>()); | ||
|
|
||
| // Normalize the scores | ||
| #pragma unroll | ||
| for (int i = 0; i < VecSize; ++i) | ||
| { | ||
| scores[i] = static_cast<DataType>(scores[i] / sumScore); | ||
| } | ||
| } | ||
|
|
||
| //////////////////////////////////////////////////////////////////////////////////////////////////// | ||
|
|
||
| template <typename InputT, typename OutputT, typename IdxT, int MaxNumExperts, int MaxNumTopExperts, | ||
| bool DoSoftmaxBeforeTopK> | ||
| __global__ void customMoeRoutingKernel(InputT* routerLogits, OutputT* topkValues, IdxT* topkIndices, | ||
| int32_t const numTokens, int32_t const numExperts, int32_t const topK) | ||
| { | ||
| using BaseType = std::conditional_t<DoSoftmaxBeforeTopK, float, InputT>; | ||
| uint32_t const blockRank = blockIdx.x; | ||
| uint32_t const tIdx = BLOCK_SIZE * blockRank + threadIdx.x; | ||
| uint32_t const warpIdx = tIdx / WARP_SIZE; | ||
| uint32_t const laneIdx = tIdx % WARP_SIZE; | ||
| uint32_t const warpNum = gridDim.x * WARPS_PER_BLOCK; | ||
| auto block = cg::this_thread_block(); | ||
| auto warp = cg::tiled_partition<WARP_SIZE>(block); | ||
|
|
||
| BaseType minScore = BaseType{-INFINITY}; | ||
ChristinaZ marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| for (uint32_t tokenId = warpIdx; tokenId < numTokens; tokenId += warpNum) | ||
| { | ||
| auto scoreOffset = tokenId * numExperts; | ||
| auto outputOffset = tokenId * topK; | ||
|
|
||
| BaseType inputScore[MaxNumExperts / WARP_SIZE]; | ||
| IdxT inputIndex[MaxNumExperts / WARP_SIZE]; | ||
|
|
||
| BaseType warpTopKScore[MaxNumTopExperts]; | ||
| IdxT warpTopKExpertIdx[MaxNumTopExperts]; | ||
|
|
||
| // Load scores and indices for this warp | ||
| for (uint32_t i = 0; i < MaxNumExperts / WARP_SIZE; ++i) | ||
| { | ||
| auto expertIdx = i * WARP_SIZE + laneIdx; | ||
| inputScore[i] | ||
| = expertIdx < numExperts ? static_cast<BaseType>(routerLogits[scoreOffset + expertIdx]) : minScore; | ||
| inputIndex[i] = expertIdx; | ||
| } | ||
|
|
||
| if constexpr (DoSoftmaxBeforeTopK) | ||
| { | ||
| calcSoftmax(warp, inputScore); | ||
| } | ||
| // Reduce topK scores and indices for this warp | ||
| reduce_topk::reduceTopK(warp, warpTopKScore, warpTopKExpertIdx, inputScore, inputIndex, minScore); | ||
|
|
||
| // Normalize the scores | ||
| if constexpr (DoSoftmaxBeforeTopK) | ||
| { | ||
| if (laneIdx < topK) | ||
| { | ||
| topkValues[outputOffset + laneIdx] = static_cast<OutputT>(warpTopKScore[laneIdx]); | ||
| topkIndices[outputOffset + laneIdx] = warpTopKExpertIdx[laneIdx]; | ||
| } | ||
| } | ||
| else | ||
| { | ||
| auto softmaxScore = calcSoftmax(warp, | ||
| laneIdx < topK ? static_cast<float>(warpTopKScore[laneIdx]) : static_cast<float>(minScore), laneIdx, | ||
| topK); | ||
| if (laneIdx < topK) | ||
| { | ||
| topkValues[outputOffset + laneIdx] = static_cast<OutputT>(softmaxScore); | ||
| topkIndices[outputOffset + laneIdx] = warpTopKExpertIdx[laneIdx]; | ||
| } | ||
| } | ||
| } // end for tokenId | ||
| } | ||
|
|
||
| int nextPowerOfTwo(int num) | ||
| { | ||
| if (num <= 0) | ||
| { | ||
| return 1; // Handle invalid input | ||
| } | ||
| int power = 1; | ||
| while (power < num) | ||
| { | ||
| // Check for overflow before shifting | ||
| if (power > INT_MAX / 2) | ||
| { | ||
| return power; | ||
| } | ||
| power <<= 1; | ||
| } | ||
| return power; | ||
| } | ||
|
|
||
| #define CASE(MAX_NUM_EXPERTS) \ | ||
| case MAX_NUM_EXPERTS: \ | ||
| switch (maxNumTopExperts) \ | ||
| { \ | ||
| case 1: \ | ||
| kernelInstance = &customMoeRoutingKernel<InputT, OutputT, IdxT, MAX_NUM_EXPERTS, 1, DoSoftmaxBeforeTopK>; \ | ||
| break; \ | ||
| case 2: \ | ||
| kernelInstance = &customMoeRoutingKernel<InputT, OutputT, IdxT, MAX_NUM_EXPERTS, 2, DoSoftmaxBeforeTopK>; \ | ||
| break; \ | ||
| case 4: \ | ||
| kernelInstance = &customMoeRoutingKernel<InputT, OutputT, IdxT, MAX_NUM_EXPERTS, 4, DoSoftmaxBeforeTopK>; \ | ||
| break; \ | ||
| case 8: \ | ||
| kernelInstance = &customMoeRoutingKernel<InputT, OutputT, IdxT, MAX_NUM_EXPERTS, 8, DoSoftmaxBeforeTopK>; \ | ||
| break; \ | ||
| default: kernelInstance = nullptr; break; \ | ||
| } \ | ||
| break; | ||
|
|
||
| template <typename InputT, typename OutputT, typename IdxT, bool DoSoftmaxBeforeTopK> | ||
| void invokeRenormMoeRouting(InputT* routerLogits, OutputT* topkValues, IdxT* topkIndices, int64_t const numTokens, | ||
| int64_t const numExperts, int64_t const topK, cudaStream_t const stream) | ||
| { | ||
|
|
||
| const uint32_t maxNumBlocks = 1024; | ||
| const uint32_t numBlocks = std::min(static_cast<uint32_t>((numTokens - 1) / WARPS_PER_BLOCK + 1), maxNumBlocks); | ||
|
|
||
| uint32_t maxNumExperts = nextPowerOfTwo(numExperts) < 32 ? 32 : nextPowerOfTwo(numExperts); | ||
| uint32_t maxNumTopExperts = nextPowerOfTwo(topK); | ||
|
|
||
| auto* kernelInstance = &customMoeRoutingKernel<InputT, OutputT, IdxT, 128, 8, DoSoftmaxBeforeTopK>; | ||
|
|
||
| switch (maxNumExperts) | ||
| { | ||
| CASE(32) | ||
| CASE(64) | ||
| CASE(96) | ||
| CASE(128) | ||
| default: kernelInstance = nullptr; break; | ||
| } | ||
|
|
||
| if (kernelInstance == nullptr) | ||
| { | ||
| TLLM_CHECK_WITH_INFO(kernelInstance != nullptr, "Can not find corresponding kernel instance."); | ||
| } | ||
|
|
||
| dim3 renormMoeRoutingGridDim(numBlocks); | ||
| dim3 renormMoeRoutingBlockDim(BLOCK_SIZE); | ||
| cudaLaunchConfig_t config; | ||
| config.gridDim = renormMoeRoutingGridDim; | ||
| config.blockDim = renormMoeRoutingBlockDim; | ||
| config.dynamicSmemBytes = 0; | ||
| config.stream = stream; | ||
| cudaLaunchAttribute attrs[1]; | ||
| attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; | ||
| attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL(); | ||
| config.numAttrs = 1; | ||
| config.attrs = attrs; | ||
| cudaLaunchKernelEx(&config, kernelInstance, routerLogits, topkValues, topkIndices, static_cast<int32_t>(numTokens), | ||
| static_cast<int32_t>(numExperts), static_cast<int32_t>(topK)); | ||
| sync_check_cuda_error(stream); | ||
litaotju marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| } | ||
|
|
||
| #define INSTANTIATE_RENORM_MOE_ROUTING(InputT, OutputT, IdxT, DoSoftmaxBeforeTopK) \ | ||
| template void invokeRenormMoeRouting<InputT, OutputT, IdxT, DoSoftmaxBeforeTopK>(InputT * routerLogits, \ | ||
| OutputT * topkValues, IdxT * topkIndices, int64_t const numTokens, int64_t const numExperts, \ | ||
| int64_t const topK, cudaStream_t const stream); | ||
|
|
||
| INSTANTIATE_RENORM_MOE_ROUTING(float, float, int32_t, false); | ||
| INSTANTIATE_RENORM_MOE_ROUTING(half, float, int32_t, false); | ||
| #ifdef ENABLE_BF16 | ||
| INSTANTIATE_RENORM_MOE_ROUTING(__nv_bfloat16, float, int32_t, false); | ||
| #endif | ||
|
|
||
| INSTANTIATE_RENORM_MOE_ROUTING(float, float, int32_t, true); | ||
| INSTANTIATE_RENORM_MOE_ROUTING(half, float, int32_t, true); | ||
| #ifdef ENABLE_BF16 | ||
| INSTANTIATE_RENORM_MOE_ROUTING(__nv_bfloat16, float, int32_t, true); | ||
| #endif | ||
|
|
||
| } // namespace tensorrt_llm::kernels | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.