-
Notifications
You must be signed in to change notification settings - Fork 2.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TTS] Add modules for mel spectrogram codec (#8238)
* [TTS] Add modules for mel spectrogram codec Signed-off-by: Ryan <[email protected]> * [TTS] Add mel band validation Signed-off-by: Ryan <[email protected]> * [TTS] Add fullband mel encoder and more documentation Signed-off-by: Ryan <[email protected]> --------- Signed-off-by: Ryan <[email protected]>
- Loading branch information
Showing
3 changed files
with
816 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
# This config contains the default values for training 44.1kHz audio codec model which encodes mel spectrogram | ||
# instead of raw audio. | ||
# If you want to train model on other dataset, you can change config values according to your dataset. | ||
# Most dataset-specific arguments are in the head of the config file, see below. | ||
|
||
name: MelCodec | ||
|
||
max_epochs: ??? | ||
# Adjust batch size based on GPU memory | ||
batch_size: 16 | ||
# When doing weighted sampling with multiple manifests, this defines how many training steps are in an epoch. | ||
# If null, then weighted sampling is disabled. | ||
weighted_sampling_steps_per_epoch: null | ||
|
||
# Dataset metadata for each manifest | ||
# https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/tts/data/vocoder_dataset.py#L39-L41 | ||
train_ds_meta: ??? | ||
val_ds_meta: ??? | ||
|
||
log_ds_meta: ??? | ||
log_dir: ??? | ||
|
||
# Modify these values based on your sample rate | ||
sample_rate: 44100 | ||
win_length: 2048 | ||
hop_length: 512 | ||
train_n_samples: 16384 # ~0.37 seconds | ||
# The product of the up_sample_rates should match the hop_length. | ||
# For example 8 * 8 * 4 * 2 = 512. | ||
up_sample_rates: [8, 8, 4, 2] | ||
|
||
|
||
model: | ||
|
||
max_epochs: ${max_epochs} | ||
steps_per_epoch: ${weighted_sampling_steps_per_epoch} | ||
|
||
sample_rate: ${sample_rate} | ||
samples_per_frame: ${hop_length} | ||
|
||
mel_loss_l1_scale: 1.0 | ||
mel_loss_l2_scale: 0.0 | ||
stft_loss_scale: 20.0 | ||
time_domain_loss_scale: 0.0 | ||
commit_loss_scale: 0.0 | ||
|
||
# Probability of updating the discriminator during each training step | ||
# For example, update the discriminator 1/2 times (1 update for every 2 batches) | ||
disc_updates_per_period: 1 | ||
disc_update_period: 2 | ||
|
||
# All resolutions for mel reconstruction loss, ordered [num_fft, hop_length, window_length] | ||
loss_resolutions: [ | ||
[32, 8, 32], [64, 16, 64], [128, 32, 128], [256, 64, 256], [512, 128, 512], [1024, 256, 1024], [2048, 512, 2048] | ||
] | ||
mel_loss_dims: [5, 10, 20, 40, 80, 160, 320] | ||
mel_loss_log_guard: 1.0 | ||
stft_loss_log_guard: 1.0 | ||
feature_loss_type: absolute | ||
|
||
train_ds: | ||
dataset: | ||
_target_: nemo.collections.tts.data.vocoder_dataset.VocoderDataset | ||
dataset_meta: ${train_ds_meta} | ||
weighted_sampling_steps_per_epoch: ${weighted_sampling_steps_per_epoch} | ||
sample_rate: ${sample_rate} | ||
n_samples: ${train_n_samples} | ||
min_duration: 0.4 | ||
max_duration: null | ||
|
||
dataloader_params: | ||
batch_size: ${batch_size} | ||
drop_last: true | ||
num_workers: 4 | ||
|
||
validation_ds: | ||
dataset: | ||
_target_: nemo.collections.tts.data.vocoder_dataset.VocoderDataset | ||
sample_rate: ${sample_rate} | ||
n_samples: null | ||
min_duration: null | ||
max_duration: null | ||
trunc_duration: 10.0 # Only use the first 10 seconds of audio for computing validation loss | ||
dataset_meta: ${val_ds_meta} | ||
|
||
dataloader_params: | ||
batch_size: 4 | ||
num_workers: 2 | ||
|
||
# Configures how audio samples are generated and saved during training. | ||
# Remove this section to disable logging. | ||
log_config: | ||
log_dir: ${log_dir} | ||
log_epochs: [10, 50, 100, 150, 200] | ||
epoch_frequency: 100 | ||
log_tensorboard: false | ||
log_wandb: true | ||
|
||
generators: | ||
- _target_: nemo.collections.tts.parts.utils.callbacks.AudioCodecArtifactGenerator | ||
log_audio: true | ||
log_encoding: true | ||
log_dequantized: true | ||
|
||
dataset: | ||
_target_: nemo.collections.tts.data.vocoder_dataset.VocoderDataset | ||
sample_rate: ${sample_rate} | ||
n_samples: null | ||
min_duration: null | ||
max_duration: null | ||
trunc_duration: 10.0 # Only log the first 10 seconds of generated audio. | ||
dataset_meta: ${log_ds_meta} | ||
|
||
dataloader_params: | ||
batch_size: 4 | ||
num_workers: 2 | ||
|
||
audio_encoder: | ||
_target_: nemo.collections.tts.modules.audio_codec_modules.MultiBandMelEncoder | ||
mel_bands: [[0, 10], [10, 20], [20, 30], [30, 40], [40, 50], [50, 60], [60, 70], [70, 80]] | ||
out_channels: 4 # The dimension of each codebook | ||
hidden_channels: 128 | ||
filters: 256 | ||
mel_processor: | ||
_target_: nemo.collections.tts.modules.audio_codec_modules.MelSpectrogramProcessor | ||
mel_dim: 80 | ||
sample_rate: ${sample_rate} | ||
win_length: ${win_length} | ||
hop_length: ${hop_length} | ||
|
||
audio_decoder: | ||
_target_: nemo.collections.tts.modules.audio_codec_modules.HiFiGANDecoder | ||
up_sample_rates: ${up_sample_rates} | ||
input_dim: 32 # Should be equal to len(audio_encoder.mel_bands) * audio_encoder.out_channels | ||
base_channels: 1024 # This is double the base channels of HiFi-GAN V1, making it approximately 4x larger. | ||
|
||
vector_quantizer: | ||
_target_: nemo.collections.tts.modules.audio_codec_modules.GroupFiniteScalarQuantizer | ||
num_groups: 8 # Should equal len(audio_encoder.mel_bands) | ||
num_levels_per_group: [8, 5, 5, 5] # 8 * 5 * 5 * 5 = 1000 entries per codebook | ||
|
||
discriminator: | ||
_target_: nemo.collections.tts.modules.audio_codec_modules.Discriminator | ||
discriminators: | ||
- _target_: nemo.collections.tts.modules.encodec_modules.MultiResolutionDiscriminatorSTFT | ||
resolutions: [[128, 32, 128], [256, 64, 256], [512, 128, 512], [1024, 256, 1024], [2048, 512, 2048]] | ||
- _target_: nemo.collections.tts.modules.audio_codec_modules.MultiPeriodDiscriminator | ||
|
||
# The original EnCodec uses hinged loss, but squared-GAN loss is more stable | ||
# and reduces the need to tune the loss weights or use a gradient balancer. | ||
generator_loss: | ||
_target_: nemo.collections.tts.losses.audio_codec_loss.GeneratorSquaredLoss | ||
|
||
discriminator_loss: | ||
_target_: nemo.collections.tts.losses.audio_codec_loss.DiscriminatorSquaredLoss | ||
|
||
optim: | ||
_target_: torch.optim.Adam | ||
lr: 2e-4 | ||
betas: [0.8, 0.99] | ||
|
||
sched: | ||
name: ExponentialLR | ||
gamma: 0.998 | ||
|
||
trainer: | ||
num_nodes: 1 | ||
devices: 1 | ||
accelerator: gpu | ||
strategy: ddp_find_unused_parameters_true | ||
precision: 16 | ||
max_epochs: ${max_epochs} | ||
accumulate_grad_batches: 1 | ||
enable_checkpointing: False # Provided by exp_manager | ||
logger: false # Provided by exp_manager | ||
log_every_n_steps: 100 | ||
check_val_every_n_epoch: 5 | ||
benchmark: false | ||
|
||
exp_manager: | ||
exp_dir: null | ||
name: ${name} | ||
create_tensorboard_logger: false | ||
create_wandb_logger: true | ||
wandb_logger_kwargs: | ||
name: null | ||
project: null | ||
create_checkpoint_callback: true | ||
checkpoint_callback_params: | ||
monitor: val_loss | ||
mode: min | ||
save_top_k: 5 | ||
save_best_model: true | ||
always_save_nemo: true | ||
resume_if_exists: false | ||
resume_ignore_no_checkpoint: false |
Oops, something went wrong.