Skip to content

Commit

Permalink
Megatron KERPLE positional embeddings (#6478) (#6480)
Browse files Browse the repository at this point in the history
* [TTS] FastPitch adapter fine-tune and conditional layer normalization (#6416)

[TTS] FastPitch adapter fine-tune and conditional layer normalization (#6416)

---------




* [TTS] whitelist broken path fix. (#6412)

* [TTS] whitelist broken path fix.



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------




* [TTS] FastPitch speaker encoder (#6417)

* Add initial codes



* Remove wemb



* Fix import



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Restore aligner loss



* Add ConditionalInput



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix error and support pre-trained config



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Follow comments



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Rename config



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Change copyright and random weight test



* Add initial codes



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci



* Fix import error



* Add initial codes



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci



* Fix dataset error



* Remove reference speaker embedding



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci



* Remove SV encoder



* Follow comments



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci



* Fix length type



* Fix append



* Move error msg



* Add look-up into speaker encoder



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci



* Add valueerror msg



* Move lookup



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci



* Remove unused



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci



* Fix error



* Rebase and Fix error



* Fix spk encoder



* Rename n_speakers



* Follow comments



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix n_speakers None error



---------




* Sharded manifests for tarred datasets (#6395)

* testing sharded manifests



* compatibility



* proper fixes



* adding flag tot convert_to_tarred_audio_dataset



* shard_manifests conf param



* propagating the shard_manifests param



* propagating the shard_manifests param



* distributed checks



* typo



* typo



* fixes



* fixes



* fixes



* fixes



* fixes



* fixes



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fixes based on PR comments and tests



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fixes to convert_to_tarred_audio_dataset.py



* reversing manifest shards flag



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* tests



* excluding manifests from webdataset url expansion



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* expand manifest paths before attempting to cache from datastore



* explicit use of UTF-8 for manifest i/o



---------




* Update wfst_text_normalization.rst (#6374)

Add Hungarian (incoming in NeMo-text-processing)



* Support Swiglu in TP PP Conversion (#6437) (#6451)

* Support Swiglu in TP PP Conversion



* Guard activation



* Guard activation



---------




* Update NeMo_TTS_Primer.ipynb (#6436)

* Update NeMo_TTS_Primer.ipynb

Changed a mistake in line 782. Instead of frequency band (ie. pitch) we should write frequency bin. Note that frequency bins in FFT are not related to pitch.



* Update NeMo_TTS_Primer.ipynb

Corrected the description of spectrogram and mel spectrogram calculations in lines 782 & 783 and added a fourth point to the description and added a reference for more mathematical details at the end of this point.



---------



* add rampup batch size support for Megatron GPT (#6424)

* added rampup batch size support



* added tests for rampup batch size



* fixed the typos



* added assertions



* changed assertion rules



* deleted unused imports



* changed tests for rampup batch size



* updated rampup batch size tests



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fixed styling



* rampup batch size tests changes



---------







* Meagtron encoder decoder fix for empty validation outputs (#6459) (#6461)

* 1. Meagtron encoder decoder fix for empty validation outputs.



* 1. Debugging.

---------





* Code-Switching dataset creation - upgrading to aggregate tokenizer manifest format (#6448)

* added functionality to create agg tokenizer compatible manifest for CS, flag to use this mode by default



* updated README with the new agg_tokenizer_manifest flag



* fixed typo in scripts/speech_recognition/code_switching/README.md



* changed agg_tokenizer_manifest to is_lid_manifest



---------




* Added/updated new Conformer configs (#6426) (#6467)

* Update script for ngram rnnt and hat beam search decoding (#6370)

* add rnnt ngram beamsearch script



* add return encoding embedding option



* update script



* add rnnt and hat ngram decoding script



* add some parameters



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add return_encoder_embeddings parameter to RNNTDecodingConfig



* replace return_encoder_embeddings parameter



* generalization of scipt behavior



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove return_encoder_embeddings parameter



* remove return_encoder_embeddings parameter



* add manual encoder_embeddings calculation



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix beam_width value to 8



* fix rescoring description



---------






* BERT pre-training mp fork to spawn (#6442) (#6454)

* change bert fork to spawn



* num_workers=0 fix



---------




* fix replace_bos_with_pad not found (#6443) (#6450)




* reduce workers on NMT CI (#6472) (#6474)




* 1. Added KERPLE positional embeddings to encoder-decoder.



* 1. Added a missing file.



* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* 1. Fixing commits.



* 1. Debugging.

* 1. Debugging.

* 1. Debugging.

* 1. Debugging.

---------

Signed-off-by: hsiehjackson <[email protected]>
Signed-off-by: Xuesong Yang <[email protected]>
Signed-off-by: Dima Rekesh <[email protected]>
Signed-off-by: Jim O’Regan <[email protected]>
Signed-off-by: smajumdar <[email protected]>
Signed-off-by: Mostafa Ghorbandoost <[email protected]>
Signed-off-by: Dmytro Pykhtar <[email protected]>
Signed-off-by: Dmytro Pykhtar <[email protected]>
Signed-off-by: Micha Livne <[email protected]>
Signed-off-by: Kunal Dhawan <[email protected]>
Signed-off-by: andrusenkoau <[email protected]>
Signed-off-by: Andrei Andrusenko <[email protected]>
Signed-off-by: Abhinav Khattar <[email protected]>
Co-authored-by: Micha Livne <[email protected]>
Co-authored-by: Cheng-Ping Hsieh <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Xuesong Yang <[email protected]>
Co-authored-by: Dima Rekesh <[email protected]>
Co-authored-by: Jim O’Regan <[email protected]>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Somshubra Majumdar <[email protected]>
Co-authored-by: Mostafa Ghorbandoost <[email protected]>
Co-authored-by: Dmytro Pykhtar <[email protected]>
Co-authored-by: Dmytro Pykhtar <[email protected]>
Co-authored-by: Eric Harper <[email protected]>
Co-authored-by: Micha Livne <[email protected]>
Co-authored-by: Kunal Dhawan <[email protected]>
Co-authored-by: Andrei Andrusenko <[email protected]>
Co-authored-by: Abhinav Khattar <[email protected]>
  • Loading branch information
16 people authored Apr 24, 2023
1 parent bba99ad commit b347dd5
Show file tree
Hide file tree
Showing 4 changed files with 208 additions and 3 deletions.
96 changes: 96 additions & 0 deletions Jenkinsfile
Original file line number Diff line number Diff line change
Expand Up @@ -3806,6 +3806,102 @@ assert_frame_equal(training_curve, gt_curve, rtol=1e-3, atol=1e-3)"'''
sh "rm -rf examples/nlp/language_modeling/t5_index_mappings"
}
}
stage('L2: Megatron T5 with KERPLE Pretraining and Resume Training TP=2') {
when {
anyOf {
branch 'r1.18.0'
changeRequest target: 'r1.18.0'
}
}
failFast true
steps {
sh "python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation='swiglu' \
model.encoder.masked_softmax_fusion=False \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method='block' \
model.encoder.activations_checkpoint_num_layers=1 \
model.encoder.position_embedding_type=kerple \
model.decoder.num_layers=2 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation='swiglu' \
model.decoder.masked_softmax_fusion=False \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method='block' \
model.decoder.activations_checkpoint_num_layers=1 \
model.encoder.transformer_block_type='pre_ln' \
model.decoder.transformer_block_type='pre_ln' \
model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \
model.data.data_impl=text_mmap \
+model.data.data_impl_kwargs.newline_int=10 \
+model.data.data_impl_kwargs.header_lines=0 \
+model.data.data_impl_kwargs.workers=null \
+model.data.data_impl_kwargs.sort_dataset_paths=False \
model.share_token_embeddings=False \
model.share_decoder_tokens_head_embeddings=False"
sh "python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
exp_manager.resume_if_exists=True \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation='swiglu' \
model.encoder.masked_softmax_fusion=False \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method='block' \
model.encoder.activations_checkpoint_num_layers=1 \
model.encoder.position_embedding_type=kerple \
model.decoder.num_layers=2 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation='swiglu' \
model.decoder.masked_softmax_fusion=False \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method='block' \
model.decoder.activations_checkpoint_num_layers=1 \
model.encoder.transformer_block_type='pre_ln' \
model.decoder.transformer_block_type='pre_ln' \
model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \
model.data.data_impl=text_mmap \
+model.data.data_impl_kwargs.newline_int=10 \
+model.data.data_impl_kwargs.header_lines=0 \
+model.data.data_impl_kwargs.workers=null \
+model.data.data_impl_kwargs.sort_dataset_paths=False \
model.share_token_embeddings=False \
model.share_decoder_tokens_head_embeddings=False"
sh "rm -rf examples/nlp/language_modeling/t5_pretrain_results"
sh "rm -rf examples/nlp/language_modeling/t5_index_mappings"
}
}
stage('L2: Megatron T5 Pretraining and Resume Training PP=2') {
when {
anyOf {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ init_method_std: 0.02 # Standard deviation of the zero mean normal distribution
hidden_dropout: 0.1 # Dropout probability for hidden state transformer.
attention_dropout: 0.1 # Dropout probability in the attention layer.
ffn_dropout: 0.0 # Dropout probability in the feed-forward layer.
position_embedding_type: 'learned_absolute' # Position embedding type. Options ['learned_absolute', 'relative', 'alibi']
position_embedding_type: 'learned_absolute' # Position embedding type. Options ['learned_absolute', 'relative', 'alibi', 'kerple']
relative_attention_num_buckets: 32 # Relative position number of buckets for computing the bias
relative_attention_max_distance: 128 # max_distance to keep relative distance in the attention_num_buckets.
relative_position_bias_self_attention_only: True # whether to only use relative position bias for self attention only.
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
# coding=utf-8
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math

import torch

from nemo.collections.nlp.modules.common.megatron.alibi_relative_position_embedding import (
build_relative_position,
build_slopes,
)

__all__ = ['KERPLERelativePositionEmbedding']


class KERPLERelativePositionEmbedding(torch.nn.Module):
"""
kerple (Attention with Linear Biases) relative position embedding for auto-regressive decoder
and joint encoder (symmetric for forward and backward distance).
Based on https://arxiv.org/bas/2108.12409
"""

def __init__(
self, bidirectional, num_attention_heads, layer_type, num_attention_heads_kerple=None, max_seq_len=512
):
"""
Args:
bidirectional: Whether to use bidirectional relative position embedding
num_attention_heads: Number of attention heads
layer_type: Layer type. Can be one of [LayerType.encoder or LayerType.decoder]. Willdetermine the bias construction
num_attention_heads_kerple: Number of attention heads for which kerple bias will be used
max_seq_len: Maximum sequence length for precomputed relative positions. Larger sizes will result in more memory usage by computing kerple mask on-the-fly.
"""
super().__init__()

if (num_attention_heads_kerple is None) or (num_attention_heads_kerple <= 0):
num_attention_heads_kerple = num_attention_heads

if num_attention_heads_kerple > num_attention_heads:
raise ValueError(
f"num_attention_heads_kerple ({num_attention_heads_kerple}) cannot be larger than num_attention_heads ({num_attention_heads})"
)

self.bidirectional = bidirectional
self.num_attention_heads = num_attention_heads
# LayerType.encoder or LayerType.decoder. Is only needed to determine the group for the all_reduce
self.layer_type = layer_type
# define the size of pre-computed relative position slopes.
# define the number of attention heads for which kerple mask will be pre-computed (the rest are disabled).
self.num_attention_heads_kerple = num_attention_heads_kerple
# Larger sizes will result in more memory usage by computing kerple mask on-the-fly.
self.max_seq_len = max_seq_len

# initialize the slopes
self.kerple_b = torch.nn.Parameter(build_slopes(num_attention_heads, num_attention_heads_kerple))
self.kerple_a = torch.zeros_like(self.kerple_b)
self.kerple_p = torch.ones_like(self.kerple_b)

# cache the relative position bias. shape (num_attention_heads, max_seq_len, max_seq_len)
self.relative_position = build_relative_position(max_seq_len, max_seq_len, num_attention_heads)

def forward(self, query_seq_length, key_seq_length):
# used cached relative position if possible
max_seq_len = max(query_seq_length, key_seq_length)
if max_seq_len > self.max_seq_len:
relative_position = build_relative_position(max_seq_len, max_seq_len, self.num_attention_heads)
else:
relative_position = self.relative_position
# shape (num_attention_heads, query_seq_length, key_seq_length)
relative_position = relative_position[:, :query_seq_length, :key_seq_length]
# if not bidirectional, mask out the future positions
if not self.bidirectional:
relative_position = torch.tril(relative_position)

# shape (1, num_heads, query_length, key_length)
return -self.kerple_b * torch.log(1 + self.kerple_a * relative_position.unsqueeze(0).pow(self.kerple_p))
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,9 @@
from nemo.collections.nlp.modules.common.megatron.alibi_relative_position_embedding import (
ALiBiRelativePositionEmbedding,
)
from nemo.collections.nlp.modules.common.megatron.kerple_relative_position_embedding import (
KERPLERelativePositionEmbedding,
)
from nemo.collections.nlp.modules.common.megatron.language_model import Embedding
from nemo.collections.nlp.modules.common.megatron.layer_type import LayerType
from nemo.collections.nlp.modules.common.megatron.megatron_decoders import get_decoder_model
Expand Down Expand Up @@ -176,7 +179,16 @@ def __init__(
num_attention_heads_alibi=None,
max_seq_len=max_position_embeddings,
)
self._encoder_relative_position_embedding_key = "encoder_relative_position_embedding"
self._encoder_relative_position_embedding_key = "encoder_alibi_position_embedding"
elif self.encoder_cfg.get('position_embedding_type', 'learned_absolute') == 'kerple':
self.encoder_relative_position_embedding = KERPLERelativePositionEmbedding(
bidirectional=True,
num_attention_heads=encoder_cfg.num_attention_heads,
layer_type=LayerType.encoder,
num_attention_heads_kerple=None,
max_seq_len=max_position_embeddings,
)
self._encoder_relative_position_embedding_key = "encoder_kerple_position_embedding"
else:
self.encoder_relative_position_embedding = None

Expand Down Expand Up @@ -296,7 +308,16 @@ def __init__(
num_attention_heads_alibi=None,
max_seq_len=max_position_embeddings,
)
self._decoder_relative_position_embedding_key = "decoder_relative_position_embedding"
self._decoder_relative_position_embedding_key = "decoder_alibi_position_embedding"
elif self.decoder_cfg.get('position_embedding_type', 'learned_absolute') == 'kerple':
self.decoder_relative_position_embedding = KERPLERelativePositionEmbedding(
bidirectional=False,
num_attention_heads=decoder_cfg.num_attention_heads,
layer_type=LayerType.decoder,
num_attention_heads_kerple=None,
max_seq_len=max_position_embeddings,
)
self._decoder_relative_position_embedding_key = "decoder_kerple_position_embedding"
else:
self.decoder_relative_position_embedding = None

Expand Down

0 comments on commit b347dd5

Please sign in to comment.