Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 0 additions & 4 deletions examples/configs/recipes/llm/grpo-deepscaler-1.5b-24K.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,3 @@ policy:
gpu_memory_utilization: 0.8
enforce_eager: True
max_model_len: ${policy.max_total_sequence_length}

cluster:
gpus_per_node: 8
num_nodes: 4
16 changes: 10 additions & 6 deletions nemo_rl/models/policy/dtensor_policy_worker.py
Original file line number Diff line number Diff line change
Expand Up @@ -720,6 +720,7 @@ def train(
logits = self.model.lm_head(outputs.last_hidden_state)
else:
logits = outputs.logits
del outputs

# Apply temperature scaling
logits = self._apply_temperature_scaling(logits)
Expand Down Expand Up @@ -786,6 +787,7 @@ def train(
global_valid_seqs,
global_valid_toks,
)
del logits

# skip the update for dummy batches
if mb_idx < iterator_len:
Expand Down Expand Up @@ -1044,17 +1046,19 @@ def get_logprobs(
placements=[Shard(sequence_dim), Shard(-1)],
)

logits = logits.to(torch.float32)
token_logprobs = get_logprobs_from_vocab_parallel_logits(
logits.to(torch.float32),
logits,
input_ids_dtensor,
seq_index_tensor,
)

assert token_logprobs.shape[1] == seq_len - 1
else:
if isinstance(logits, DTensor):
logits = logits.to(torch.float32)
token_logprobs = get_logprobs_from_vocab_parallel_logits(
logits.to(torch.float32), input_ids
logits, input_ids
)
else:
# Extract logprobs for each token in the sequence by gathering the logprob
Expand All @@ -1064,16 +1068,16 @@ def get_logprobs(
# token_ids: [batch_size, sequence_length] - actual tokens
# Output shape: [batch_size, sequence_length] - logprob of each token given previous
# We get logprob of token[t+1] from logits[t], prepending 0 to maintain sequence length

log_probs = torch.nn.functional.log_softmax(
outputs.logits.to(torch.float32), dim=-1
)
logits = outputs.logits.to(torch.float32)
log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
next_tokens = input_ids[:, 1:]
log_probs = log_probs[:, :-1]
token_logprobs = log_probs.gather(
dim=-1, index=next_tokens.unsqueeze(-1)
).squeeze(-1)

del outputs, logits

token_logprobs = torch.cat(
[torch.zeros_like(token_logprobs[:, :1]), token_logprobs], dim=1
)
Expand Down