Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
271 changes: 271 additions & 0 deletions examples/configs/grpo_genrm_rlhf_1B.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,271 @@
# GRPO Algorithm Configuration for GenRM RLHF
grpo:
num_prompts_per_step: 32
num_generations_per_prompt: 8
num_val_generations_per_prompt: 4 # Number of responses to generate per prompt during validation
max_rollout_turns: 1 # Single turn evaluation task
max_num_epochs: 1
max_num_steps: 1000000
normalize_rewards: true
use_leave_one_out_baseline: true
val_period: 10
val_at_start: false
overlong_filtering: false
max_val_samples: 32
val_batch_size: 32
seed: 42
async_grpo:
enabled: false # Set to true to enable async training mode
# Max age (in training steps) for trajectories used in training
max_trajectory_age_steps: 1

loss_fn:
reference_policy_kl_penalty: 0.01
ratio_clip_min: 0.2
ratio_clip_max: 0.2
ratio_clip_c: null
# (default off) loss formulation improvements (docs/guides/grpo.md#loss)
use_on_policy_kl_approximation: false
# Async GRPO requires importance sampling correction enabled
# Set to true when async_grpo.enabled is true
use_importance_sampling_correction: false
sequence_level_importance_ratios: false
token_level_loss: true
imp_clip_max: null # Maximum value for importance sampling weight clipping (null to disable)

checkpointing:
enabled: true
checkpoint_dir: "results/grpo_genrm_rlhf"
metric_name: "val_reward"
higher_is_better: true
keep_top_k: 3
save_period: 10
checkpoint_must_save_by: null
model_save_format: "safetensors"
save_consolidated: false

policy:
model_name: "Qwen/Qwen2.5-1.5B" # Use base model, not instruct version
tokenizer:
name: ${policy.model_name} ## specify if you'd like to use a tokenizer different from the model's default
train_global_batch_size: 512
train_micro_batch_size: 4
generation_batch_size: 32 # Only used when generating using HF backend
logprob_batch_size: 4
max_total_sequence_length: 8192 # Increased for long evaluation prompts
precision: "bfloat16"
logprob_chunk_size: null

dtensor_cfg:
_v2: true
enabled: true
cpu_offload: False
sequence_parallel: false
activation_checkpointing: false
tensor_parallel_size: 1
context_parallel_size: 1
custom_parallel_plan: null

megatron_cfg:
enabled: false
empty_unused_memory_level: 0
activation_checkpointing: false
converter_type: "Qwen2ForCausalLM"
tensor_model_parallel_size: 1
expert_tensor_parallel_size: 1
expert_model_parallel_size: 1
pipeline_model_parallel_size: 1
num_layers_in_first_pipeline_stage: null
num_layers_in_last_pipeline_stage: null
context_parallel_size: 1
pipeline_dtype: ${policy.precision}
sequence_parallel: false
freeze_moe_router: true
moe_router_dtype: "fp64"
moe_router_load_balancing_type: "none" # "seq_aux_loss" causes logprob error divergence for grpo
moe_router_bias_update_rate: 0.0 # by default, disable bias updates for grpo
moe_permute_fusion: false
#gives ~20% training perf speedup with sequence packing
apply_rope_fusion: True
defer_fp32_logits: null

optimizer:
optimizer: "adam"
lr: 5.0e-6
min_lr: 5.0e-7
weight_decay: 0.01
bf16: true
fp16: false
params_dtype: "float32"

#adam
adam_beta1: 0.9
adam_beta2: 0.999
adam_eps: 1e-8

#sgd
sgd_momentum: 0.9

#distributed optimizer
use_distributed_optimizer: true
use_precision_aware_optimizer: true

clip_grad: ${policy.max_grad_norm}

scheduler:
start_weight_decay: ${policy.megatron_cfg.optimizer.weight_decay}
end_weight_decay: ${policy.megatron_cfg.optimizer.weight_decay}
weight_decay_incr_style: "constant"
lr_decay_style: "constant"
lr_decay_iters: 1000
lr_warmup_iters: 13
lr_warmup_init: 5.0e-7

distributed_data_parallel_config:
grad_reduce_in_fp32: false
overlap_grad_reduce: true
overlap_param_gather: true
average_in_collective: true
use_custom_fsdp: false
data_parallel_sharding_strategy: "optim_grads_params"

env_vars: null

# See docs/design-docs/sequence-packing-and-dynamic-batching.md
# for more details on dynamic batching and sequence packing.
dynamic_batching:
enabled: False
train_mb_tokens: ${mul:${policy.max_total_sequence_length}, ${policy.train_micro_batch_size}}
logprob_mb_tokens: ${mul:${policy.max_total_sequence_length}, ${policy.logprob_batch_size}}
sequence_length_round: 64

sequence_packing:
enabled: True
train_mb_tokens: ${mul:${policy.max_total_sequence_length}, ${policy.train_micro_batch_size}}
logprob_mb_tokens: ${mul:${policy.max_total_sequence_length}, ${policy.logprob_batch_size}}
algorithm: "modified_first_fit_decreasing"
sequence_length_round: 64

# makes the training sequence length divisible by the tensor parallel size
# this is useful for sequence parallel training
make_sequence_length_divisible_by: ${policy.dtensor_cfg.tensor_parallel_size}
max_grad_norm: 1.0

optimizer:
name: "torch.optim.AdamW"
kwargs:
lr: 5.0e-6
weight_decay: 0.01
betas: [0.9, 0.999]
eps: 1e-8
# when using Dtensor, we need to set foreach
# and fused to False
foreach: False
fused: False

scheduler:
- name: "torch.optim.lr_scheduler.LinearLR"
kwargs:
start_factor: 0.1
end_factor: 1.0
total_iters: 50
- name: "torch.optim.lr_scheduler.ConstantLR"
kwargs:
factor: 1.0
total_iters: 10000000000
- milestones: [50]

generation:
backend: "vllm"
max_new_tokens: ${policy.max_total_sequence_length}
temperature: 1.0
top_p: 1.0
top_k: null
stop_token_ids: null
stop_strings: null
vllm_cfg:
async_engine: false
precision: ${policy.precision}
tensor_parallel_size: 1
pipeline_parallel_size: 1
enable_expert_parallel: false
gpu_memory_utilization: 0.6
max_model_len: ${policy.max_total_sequence_length}
enforce_eager: False
use_deep_gemm: False
num_last_layers_in_bf16: 0
num_first_layers_in_bf16: 0
vllm_kwargs:
compilation_config:
# when enforce_eager is False, set ++policy.generation.vllm_kwargs.compilation_config.use_inductor=False for better accuracy,
# with the flag, vllm will use the custom CUDA kernels instead of the Triton kernels generated by torch.compile
# for more details, see convergence issue https://github.com/NVIDIA-NeMo/RL/issues/998
use_inductor: False
colocated:
# true: generation shares training GPUs
# false: uses dedicated generation resources
enabled: true
# only relevant when enabled is false
resources:
gpus_per_node: null # Decides num gpus to be dedicated to generation when there is one node in the cluster i.e cluster.num_nodes == 1
num_nodes: null # Decides number of nodes to be dedicated to generation

# Data configuration
data:
max_input_seq_length: ${policy.max_total_sequence_length} # upper bound, real truncation occurs at vllm.max_model_len
prompt_file: null # Optional prompt template file
system_prompt_file: null # Optional system prompt file
shuffle: true
dataset_name: "genrm_rlhf"
train_data_path: "path/to/your/train.jsonl" # Update with your data path
val_data_path: "path/to/your/val.jsonl" # Optional validation data path

env:
genrm_rlhf:
num_workers: 2 # Number of parallel GenRM workers
model_name: "nvidia/Llama-3_3-Nemotron-Super-49B-GenRM" # GenRM model for pairwise comparison
tensor_parallel_size: 4 # TP size for the GenRM model (requires substantial GPU memory)
gpu_memory_utilization: 0.95 # GPU memory utilization for GenRM model
max_model_len: 40000 # Max sequence length for GenRM model
num_generations_per_prompt: ${grpo.num_generations_per_prompt} # The expected number of responses to generate per prompt during training
num_val_generations_per_prompt: ${grpo.num_val_generations_per_prompt} # The expected number of responses per prompt during validation
num_judges_per_comparison: 1 # Number of independent GenRM passes per pairwise comparison (for majority voting)
temperature: 0.0 # GenRM temperature (usually 0 for deterministic evaluation)
top_p: 1.0 # Optional sampling parameter for vLLM
max_tokens: 32768 # Max tokens for GenRM's comparison output
stop: null # Stop strings for GenRM evaluation
reasoning_split_word: "</think>" # The word to split the response into reasoning and answer
max_concurrency: 16 # Maximum concurrent step calls for the environment actor
# Reward aggregation configuration
aggregator_method: "simple_tiebreaker" # Options: "weighted_win_loss", "simple_tiebreaker", "individual_scores"
# aggregator_config: # Additional config for the aggregator
# score_mapping: # Mapping from ranking scores (1-6) to weighted points for weighted_win_loss
# 1: 1.0 # Much better
# 2: 0.8 # Better
# 3: 0.6 # Slightly better
# 4: 0.4 # Slightly worse
# 5: 0.2 # Worse
# 6: 0.0 # Much worse

# Logger configuration
logger:
log_dir: "logs" # Base directory for all logs
num_val_samples_to_print: 0 # Number of validation samples to pretty print on terminal
wandb_enabled: false
tensorboard_enabled: false
mlflow_enabled: false # Disable MLflow logging
monitor_gpus: true # If true, will monitor GPU usage and log to wandb and/or tensorboard
wandb:
project: "grpo-genrm-rlhf"
name: "grpo-genrm-rlhf-logger"
tensorboard: {}
mlflow:
experiment_name: "grpo-genrm-rlhf"
run_name: "grpo-genrm-rlhf-logger"
gpu_monitoring:
collection_interval: 10 # How often to collect GPU usage metrics (in seconds)
flush_interval: 10 # How often to flush GPU usage metrics to the loggers (in seconds)

cluster:
gpus_per_node: 1
num_nodes: 1
Loading
Loading