Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Gb/optm state #242

Merged
merged 6 commits into from
Nov 14, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 24 additions & 1 deletion sup3r/models/abstract.py
Original file line number Diff line number Diff line change
Expand Up @@ -1037,7 +1037,7 @@ def get_optimizer_config(optimizer):
Parameters
----------
optimizer : tf.keras.optimizers.Optimizer
TF-Keras optimizer object
TF-Keras optimizer object (e.g., Adam)

Returns
-------
Expand All @@ -1053,6 +1053,29 @@ def get_optimizer_config(optimizer):
conf[k] = int(v)
return conf

@classmethod
def get_optimizer_state(cls, optimizer):
"""Get a set of state variables for the optimizer

Parameters
----------
optimizer : tf.keras.optimizers.Optimizer
TF-Keras optimizer object (e.g., Adam)

Returns
-------
state : dict
Optimizer state variables
"""
lr = cls.get_optimizer_config(optimizer)['learning_rate']
state = {'learning_rate': lr}
for var in optimizer.variables:
name = var.name
var = var.numpy().flatten()
var = np.abs(var).mean() # collapse ndarrays into mean absolute
state[name] = float(var)
return state

@staticmethod
def update_loss_details(loss_details, new_data, batch_len, prefix=None):
"""Update a dictionary of loss_details with loss information from a new
Expand Down
22 changes: 12 additions & 10 deletions sup3r/models/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -746,8 +746,10 @@ def train_epoch(

b_loss_details['gen_trained_frac'] = float(trained_gen)
b_loss_details['disc_trained_frac'] = float(trained_disc)

self.dict_to_tensorboard(b_loss_details)
self.dict_to_tensorboard(self.timer.log)

loss_details = self.update_loss_details(
loss_details,
b_loss_details,
Expand Down Expand Up @@ -1000,10 +1002,9 @@ def train(
loss_details['train_loss_gen'], loss_details['train_loss_disc']
)

if all(
loss in loss_details
for loss in ('val_loss_gen', 'val_loss_disc')
):
check1 = 'val_loss_gen' in loss_details
check2 = 'val_loss_disc' in loss_details
if check1 and check2:
msg += 'gen/disc val loss: {:.2e}/{:.2e} '.format(
loss_details['val_loss_gen'], loss_details['val_loss_disc']
)
Expand All @@ -1016,14 +1017,15 @@ def train(
'weight_gen_advers': weight_gen_advers,
'disc_loss_bound_0': disc_loss_bounds[0],
'disc_loss_bound_1': disc_loss_bounds[1],
'learning_rate_gen': self.get_optimizer_config(self.optimizer)[
'learning_rate'
],
'learning_rate_disc': self.get_optimizer_config(
self.optimizer_disc
)['learning_rate'],
}

opt_g = self.get_optimizer_state(self.optimizer)
opt_d = self.get_optimizer_state(self.optimizer_disc)
opt_g = {f'OptmGen/{key}': val for key, val in opt_g.items()}
opt_d = {f'OptmDisc/{key}': val for key, val in opt_d.items()}
extras.update(opt_g)
extras.update(opt_d)

weight_gen_advers = self.update_adversarial_weights(
loss_details,
adaptive_update_fraction,
Expand Down
Loading