-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path05_Annual_data_all.Rmd
361 lines (304 loc) · 10.5 KB
/
05_Annual_data_all.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
---
title: "05 Collect annual data of all types"
output:
html_document:
keep_md: true
toc: true
toc_depth: 3
toc_float: true
code_folding: hide
df_print: paged
---
__Test file__ for producing summarized data by year and quarter
Actual data used (in folder 'Data_produced') are made in __script 05b__
## 0. Libraries
```{r}
library(tidyverse)
library(readxl)
library(broom)
library(lubridate)
# library(pander)
```
## 1. Folders and files
Content of folders (see code)
```{r}
dir("Datasett")
dir("Datasett/River data (from OKA)")
dir("Datasett/hydrografi")
dir("Datasett/Bløtbunn")
dir("Datasett/hardbunn_kopi")
dir("Datasett/Plankton")
```
## 2. River data
Content of folders (see code)
```{r}
dir("Datasett/River data (from OKA)/Annual mean flows")
dir("Datasett/River data (from OKA)/Monthly loads")
dir("Datasett/River data (from OKA)/Concentrations (individual samples)")
dir("Datasett/River data (from OKA)/Monthly flow-weighted concentrations")
```
### a. Data of monthly river loads and total discharge
```{r}
df1 <- read_excel("Datasett/River data (from OKA)/Monthly loads/Storelva_monthly loads.xlsx")
df2 <- read_excel("Datasett/River data (from OKA)/Monthly loads/Gjerstadelva_Nidelva_monthly loads.xlsx")
df3 <- read_excel("Datasett/River data (from OKA)/Monthly loads/RIDx5_monthly loads.xlsx")
# head(df1, 3)
# head(df2, 3)
# head(df3, 3)
# colnames(df1) %>% dput()
# colnames(df2) %>% dput()
# colnames(df3) %>% dput() RID rivers also include PO4, SiO2 and SPM
df_rivers <- bind_rows(df1[-1,], df2[-1,], df3[-1,])
# colnames(df_rivers) %>% dput()
vars <- c("TrspTot TOTN", "TrspTot NO3-N", "TrspTot NH4-N", "TrspTot TOTP",
"TrspTot TOC", "TrspTot ALK", "TrspTot Ca", "DisTot")
for (var in vars)
df_rivers[[var]] <- as.numeric(df_rivers[[var]])
df_rivers$Time <- with(df_rivers, lubridate::ymd(paste(Year, Month, "15")))
# Add "_" in column names (TrspTot Ca -> TrspTot_Ca)
colnames(df_rivers) <- sub(" ", "_", colnames(df_rivers), fixed = TRUE)
# endre rekkefølge på elver fra nord til sør for ggplot
df_rivers$Station_name <- factor(df_rivers$Station_name, levels = c("Glomma ved Sarpsfoss", "Drammenselva", "Numedalslågen", "Skienselva", "Søndeledelva v. Søndeleddammen", "Storelva v/ Nes verk", "Nidelva ovenf. Rygene", "Otra"))
# endre navn på elver
sel <- levels(df_rivers$Station_name) == "Glomma ved Sarpsfoss"; sum(sel)
levels(df_rivers$Station_name)[sel] <- "Glomma"
sel <- levels(df_rivers$Station_name) == "Søndeledelva v. Søndeleddammen"; sum(sel)
levels(df_rivers$Station_name)[sel] <- "Gjerstadelva"
sel <- levels(df_rivers$Station_name) == "Storelva v/ Nes verk"; sum(sel)
levels(df_rivers$Station_name)[sel] <- "Storelva"
sel <- levels(df_rivers$Station_name) == "Nidelva ovenf. Rygene"; sum(sel)
levels(df_rivers$Station_name)[sel] <- "Nidelva"
levels(df_rivers$Station_name)
# Dropp Otra fra plot og analyser (nedstrøms)
df_rivers <- df_rivers %>%
filter(Station_name != "Otra") %>%
droplevels()
#print (df_rivers)
# Table of available data for each river
tb <- df_rivers %>%
gather("Variable", Value, TrspTot_TOTN:DisTot) %>%
filter(!is.na(Value)) %>%
xtabs(~Station_name + Variable, .)
tb
```
### b. Local rivers, plot monthly mean discharge by station
```{r}
gg <- df_rivers %>%
filter(substr(Station_name, 1, 4) %in% c("Nide","Gjer","Stor")) %>%
group_by(Station_name, Month) %>%
summarise(Mean = mean(DisTot, na.rm = TRUE),
Q10 = quantile(DisTot, 0.1, na.rm = TRUE),
Q90 = max(DisTot, 0.9, na.rm = TRUE)) %>%
ggplot(., aes(Month, Mean)) +
geom_ribbon(aes(ymin = Q10, ymax = Q90), fill = "lightgreen") +
geom_line() + geom_point() +
facet_wrap(~Station_name)
gg
# gg + scale_y_log10()
```
### c. Distant rivers, plot monthly mean discharge by station
Including Otra
```{r}
gg <- df_rivers %>%
filter(!substr(Station_name, 1, 4) %in% c("Nide","Gjer","Stor")) %>%
group_by(Station_name, Month) %>%
summarise(Mean = mean(DisTot, na.rm = TRUE),
Q10 = quantile(DisTot, 0.1, na.rm = TRUE),
Q90 = max(DisTot, 0.9, na.rm = TRUE)) %>%
ggplot(., aes(Month, Mean)) +
geom_ribbon(aes(ymin = Q10, ymax = Q90), fill = "lightgreen") +
geom_line() + geom_point() +
facet_wrap(~Station_name)
gg
# gg + scale_y_log10()
```
### d. Summarize by "local rivers"/"distant rivers" and quarter
* Exclude Otra
```{r}
df_rivers_summ <- df_rivers %>%
filter(!Station_name %in% "Otra") %>%
mutate(River_type = ifelse(substr(Station_name, 1, 4) %in% c("Nide","Gjer","Stor"), "Local", "Distant")) %>%
mutate(Quarter = case_when(
Month %in% 1:3 ~ 1,
Month %in% 4:6 ~ 2,
Month %in% 7:9 ~ 3,
Month %in% 10:12 ~ 4
)) %>%
group_by(River_type, Year, Quarter) %>%
summarise_at(c("TrspTot_TOTN", "TrspTot_NO3-N", "TrspTot_TOTP", "TrspTot_TOC", "DisTot"), mean, na.rm = TRUE)
```
### e. Plot in order to check data
```{r}
ggplot(df_rivers_summ, aes(Year, DisTot, color = River_type)) +
geom_smooth() +
geom_point() +
facet_grid(River_type~Quarter, scales = "free_y", labeller = label_both)
```
### f. Timing and size of spring flood
```{r}
df_rivers_springflood_allyears <- df_rivers %>%
group_by(Station_name, Year) %>%
mutate(DisTot_max = max(DisTot[Month %in% 1:6]), na.rm = TRUE) %>%
group_by(Station_name) %>%
summarize(DisTot_max_mean = mean(DisTot_max, na.rm = TRUE))
df_rivers_springflood_allyears
df_rivers_springflood <- df_rivers %>%
filter(Month %in% 1:6) %>%
group_by(Station_name, Year) %>%
mutate(DisTot_max = max(DisTot), na.rm = TRUE) %>%
group_by(Station_name) %>%
mutate(DisTot_max_mean = mean(DisTot_max, na.rm = TRUE)) %>%
ungroup() %>%
group_by(Station_name, Year) %>%
summarize(DisTot_max_rel = max(DisTot/DisTot_max_mean*100, na.rm = TRUE),
DisTot_max_month = Month[DisTot == DisTot_max][1],
DisTot_40perc = Month[DisTot >= 0.40*DisTot_max_mean][1],
DisTot_60perc = Month[DisTot >= 0.60*DisTot_max_mean][1],
DisTot_80perc = Month[DisTot >= 0.80*DisTot_max_mean][1])
```
### g. Save both
```{r}
# write.csv(df_rivers_summ, "Data_produced/05_df_rivers_summ.csv", row.names = FALSE, quote = FALSE)
# write.csv(df_rivers_springflood, "Data_produced/05_df_rivers_springflood.csv",
# row.names = FALSE, quote = FALSE)
```
### h1. Plot of max flood
```{r}
ggplot(df_rivers_springflood, aes(Year, DisTot_max_rel)) +
geom_smooth() + geom_point() +
facet_wrap(~Station_name)
```
### h2. Plot of flood timing
```{r}
df_rivers_springflood %>%
gather("Parameter", "Month", DisTot_max_month, DisTot_40perc, DisTot_60perc, DisTot_80perc) %>%
ggplot(aes(Year, Month, group = Parameter, color = Parameter)) +
geom_smooth(method = "lm") + geom_point() +
facet_wrap(~Station_name)
```
## 3. Hydrological data
### a. Read data
```{r}
load("Datasett/Hydrografi/Arendal_allvars_1990_2016.Rdata")
Df.Arendal$Month <- Df.Arendal$Dato %>% as.character() %>% substr(6,7) %>% as.numeric()
Df.Arendal$Year <- Df.Arendal$Dato %>% as.character() %>% substr(1,4) %>% as.numeric()
Df.Arendal$Time <- ymd_hms(paste(Df.Arendal$Dato, "00:00:00")) # R's time format
```
### b. Summarize by depth bins and quarter
* Depth bins = 0-10, 10-30, 30-50
* Quarters starting with March
```{r}
df_hydro_summ <- Df.Arendal %>%
mutate(
Quarter = case_when(
Month %in% 1:2 ~ 1,
Month %in% 3:5 ~ 2,
Month %in% 6:8 ~ 3,
Month %in% 9:11 ~ 4,
Month %in% 12 ~ 1),
Year2 = case_when(
Month == 12 ~ Year + 1,
Month < 12 ~ Year),
Depth = case_when(
Depth %in% c(0,5,10) ~ "Surface",
Depth %in% c(20,30) ~ "Intermediate",
Depth %in% c(50,75) ~ "Deep")
) %>%
group_by(Year2, Quarter, Depth) %>%
summarize_at(vars(Temperatur:Siktdyp), mean, na.rm = TRUE) %>%
rename(Year = Year2)
df_hydro_summ$Depth <- factor(df_hydro_summ$Depth,
levels = c("Surface", "Intermediate", "Deep"))
head (df_hydro_summ)
print (df_hydro_summ)
str(df_hydro_summ)
# plot variable by quartes vr year
gg1 <- df_hydro_summ %>%
filter(Depth %in% "Surface") %>%
ggplot (aes(Year, Temperatur)) +
geom_smooth() + geom_point() +
facet_wrap(~Quarter)
gg1
```
### c. Save
```{r}
# write.csv(df_hydro_summ, "Data_produced/05_df_hydro_summ.csv", row.names = FALSE, quote = FALSE)
```
### d. Plot temperature
```{r}
ggplot(df_hydro_summ, aes(Year, Temperatur, color = Depth)) +
geom_smooth(method = "lm") + geom_point() +
facet_grid(.~Quarter, labeller = label_both)
```
### e. Plot some nutrients etc.
```{r}
df_hydro_summ %>%
gather("Var", "Concentration", NO2_NO3, TotP, TotN, TSM) %>%
ggplot(aes(Year, Concentration, color = Depth)) +
geom_smooth(method = "lm") + geom_point() +
facet_grid(Var~Quarter, scales = "free_y", labeller = label_both)
```
## 4. Plankton
Summarize main groups only
* Will add ordination scores (DCA) later
### a. Read plankton data
```{r}
df_plank <- read_excel("Datasett/Plankton/Planteplankton Arendal.xlsx") # range = "A1:V471"
df_plank$Year <- lubridate::year(df_plank$Dato)
df_plank$Month <- lubridate::month(df_plank$Dato)
```
### b. Plankton: Select by depth
0-30 or 5 m
```{r}
xtabs(~Dyp, df_plank)
# Select
sel <- df_plank$Dyp %in% c("0-30 m", "5 m", "5m");
df_plank <- df_plank[sel,]
# Stats
cat("Select", sum(sel), "lines\n")
cat(mean(sel)*100, "% of the data")
```
### c. Summarize data
Use quarters starting with February
```{r}
df_plank_summ <- df_plank %>%
mutate(
Quarter = case_when(
Month %in% 1:2 ~ 1,
Month %in% 3:5 ~ 2,
Month %in% 6:8 ~ 3,
Month %in% 9:11 ~ 4,
Month %in% 12 ~ 1),
Year2 = case_when(
Month == 12 ~ Year + 1,
Month < 12 ~ Year),
Total = Kiselalger + Dinoflagellater + Flagellater
) %>%
group_by(Year2, Quarter) %>%
summarize_at(.vars = vars(Kiselalger:Flagellater, Total),
.funs = funs(med = median, max = max)
) %>%
rename(Year = Year2)
```
### d. Save
```{r}
# write.csv(df_plank_summ, "Data_produced/05_df_plank_summ.csv", row.names = FALSE, quote = FALSE)
```
### e. Plot medians
```{r}
df_plank_summ %>%
gather("Group", "Median", Kiselalger_med:Total_med) %>%
mutate(Quarter = paste("Quarter", Quarter)) %>%
ggplot(aes(Year, Median/1E6)) +
geom_smooth(method = "lm") + geom_point() +
facet_grid(Group~Quarter, scales = "free_y")
```
### f. Plot maxima
```{r}
df_plank_summ %>%
gather("Group", "Maximum", Kiselalger_max:Total_max) %>%
mutate(Quarter = paste("Quarter", Quarter)) %>%
ggplot(aes(Year, Maximum/1E6)) +
geom_smooth(method = "lm") + geom_point() +
facet_grid(Group~Quarter, scales = "free_y")
```