This repository contains a reproducible workflow setup using DVC backed by a JASMIN object store. Before working with the repository please contact Matt Coole to request access to the Jasmin object store llm-eval-o
. Then follow the instructions below.
- Ollama (
llama3.1
andmistral-nemo
models) - Python 3.9+
First create a new virtual environment and install the required dependencies:
python -m venv .venv
source .venv/bin/activate
pip install .
Next setup your local DVC configuration with your Jasmin object store access key:
dvc remote modify --local jasmin access_key_id '<ACCES_KEY_ID>'
dvc remote modify --local jasmin secret_access_key '<KEY_SECRET>'
Pull the data from the object store using DVC:
dvc pull
You should now be ready to re-run the pipeline:
dvc repro
This pipeline is defined in dvc.yaml
and can be viewed with the command:
dvc dag
or it can be output to mermaid format to display in markdown:
dvc dag -md
flowchart TD
node1["chunk-data"]
node2["create-embeddings"]
node3["evaluate"]
node4["extract-metadata"]
node5["fetch-metadata"]
node6["fetch-supporting-docs"]
node7["generate-testset"]
node8["run-rag-pipeline"]
node9["upload-to-docstore"]
node1-->node2
node2-->node9
node4-->node1
node5-->node4
node5-->node6
node6-->node1
node7-->node8
node8-->node3
node9-->node8
node10["data/evaluation-sets.dvc"]
node11["data/synthetic-datasets.dvc"]
Note: To re-run the
fetch-supporting-docs
stage of the pipeline you will need to request access to the Legilo service from the EDS dev team and provide yourusername
andpassword
in a.env
file.
The pipeline by default will run using the parameters defind in params.yaml
. To experiment with varying these paramaters you can change them directly, or use DVC experiments.
To run an experiment varying a particual parameter:
dvc exp run -S hp.chunk-size=1000
This will re-run the pipeline but override the value of the hp.chunk-size
parameter in params.yaml
and set it to 1000
. Only the necessary stages of the pipeline should be re-run and the result should appear in your workspace.
You can compare the results of your experiment to the results of the baseline run of the pipeline using:
dvc exp diff
Path Metric HEAD workspace Change
data/metrics.json answer_correctness 0.049482 0.043685 -0.0057974
data/metrics.json answer_similarity 0.19793 0.17474 -0.02319
data/metrics.json context_recall 0.125 0 -0.125
data/metrics.json faithfulness 0.75 0.69375 -0.05625
Path Param HEAD workspace Change
params.yaml hp.chunk-size 300 1000 700
Notes on the use of Data Version Control and Continuous Machine Learning:
Notes on running models with vLLM: