Skip to content

Cannot use two_hop_incremental #1104

@boltzmann-brain

Description

@boltzmann-brain

Hello,

I was playing around with the QA dataset generation capabilities and getting an error
You have to sample more than two passages for making two-hop questions.

I am using random_single_hop, n=50 to sample from the corpus. Am I doing something wrong? I don't see double hop sampling functions; the only sampling functions available seem to be single hop.

Full code (adapted from your Evaluation data creation tutorial in the docs):

import pandas as pd
from llama_index.llms.openai import OpenAI
from openai import AsyncOpenAI

from autorag.data.qa.filter.dontknow import dontknow_filter_rule_based
from autorag.data.qa.filter.passage_dependency import passage_dependency_filter_openai
from autorag.data.qa.generation_gt.llama_index_gen_gt import (
    make_basic_gen_gt,
    make_concise_gen_gt,
)
from autorag.data.qa.schema import Raw, Corpus
from autorag.data.qa.query.llama_gen_query import factoid_query_gen, concept_completion_query_gen, two_hop_incremental
from autorag.data.qa.sample import random_single_hop

llm = OpenAI()
raw_df = pd.read_parquet("./all_txt_parsing_output/parsed_result.parquet")
raw_instance = Raw(raw_df)

corpus_df = pd.read_parquet("all_txt_chunking_output/0.parquet")
corpus_instance = Corpus(corpus_df, raw_instance)

initial_qa = (
    corpus_instance.sample(random_single_hop, n=50)
    .map(
        lambda df: df.reset_index(drop=True),
    )
    .make_retrieval_gt_contents()
    .batch_apply(
        two_hop_incremental,
        llm=llm, # query generation
    )
    .batch_apply(
        make_basic_gen_gt,  # answer generation (basic)
        llm=llm,
    )
    .batch_apply(
        make_concise_gen_gt,  # answer generation (concise)
        llm=llm,
    )
    .filter(
        dontknow_filter_rule_based,  # filter don't know
        lang="en",
    )
)

initial_qa.to_parquet('./qa_output/factoid_twohop_basic_concise_dontknow/all_docs_qa.parquet', './all_docs_corpus.parquet')

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions