Skip to content

MaHaoLun/MTT-Net

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MTT-Net: Multi-scale Tokens-Aware Transformer Network for Multi-region and Multi-sequence MR-to-CT Synthesis in A Single Model

Experiments

  • CUDA/CUDNN
  • torch >=1.12.0
  • timn >=0.5.4
  • numpy >=1.22.3

Dataset

We applied N4 bias field correction to the data and performed registration between MR and CT images. The paired data is stored in the following format:

/Datasets/
    ├──Headneck_001
      ├── MR.nii.gz
      ├── CT.nii.gz
      ├── mask.nii.gz
    ├──Headneck_002
      ├── MR.nii.gz
      ├── CT.nii.gz
      ├── mask.nii.gz
    .
    .

    ├──Abdomen_001
      ├── MR.nii.gz
      ├── CT.nii.gz
      ├── mask.nii.gz
    ├──Abdomen_002
      ├── MR.nii.gz
      ├── CT.nii.gz
      ├── mask.nii.gz

Train

To run the train.py file, you need to set common parameters such as the data storage path and patch size. If you need to use VGG perceptual loss, you can go to the official website and download the pre-trained model of VGG19: vgg19-dcbb9e9d.pth.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%