Skip to content

MSallermann/spirit_tutorial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

1.1 Classical Heisenberg Hamiltonian

  • A fundamental model in magnetism used to describe the energy of interacting spins.
  • The model treats each magnetic moment as a classical vector.

$$ \begin{aligned} \mathcal{H} = & -\sum_{\langle i,j \rangle} \Bigl( J_{ij},\mathbf{S}_i\cdot\mathbf{S}j + \mathbf{D}{ij}\cdot (\mathbf{S}_i\times\mathbf{S}j) \Bigr)\ &-\sum{i} K (\mathbf{S}i\cdot \mathbf{n})^2 -\sum_i \mu_i, \mathbf{B}\cdot\mathbf{S}i\ &+ \frac{\mu_0}{4\pi} \sum{i<j} \frac{\mu_i,\mu_j}{r{ij}^3} \left[\mathbf{S}_i\cdot\mathbf{S}_j - 3,(\mathbf{S}i\cdot \hat{r}{ij})(\mathbf{S}j\cdot \hat{r}{ij})\right]\ &+ \text{other terms} \end{aligned} $$

  • Cheap to evaluate. Simulations with $10^6$ spins over nanoseconds are possible.

  • Coarse-graining the Heisenberg Hamiltonian is the basis of micromagnetics

  • Exchange Interaction: $-\sum_{\langle i,j \rangle} J_{ij}, \mathbf{S}_i\cdot\mathbf{S}_j$

    • $J_{ij}$: Exchange coupling constant between spins at sites $i$ and $j$.
    • $J_{ij} &gt; 0$ favors ferromagnetic alignment, while $J_{ij} &lt; 0$ favors antiferromagnetic alignment.
    • $\mathbf{S}_i$ and $\mathbf{S}_j$: Spin vectors (unit vectors) at sites $i$ and $j$
  • Dzyaloshinskii–Moriya Interaction (DMI): $-\sum_{\langle i,j \rangle} \mathbf{D}_{ij}\cdot (\mathbf{S}_i\times\mathbf{S}_j)$

    • $\mathbf{D}_{ij}$: DMI vector for the spin pair at sites $i$ and $j$.
    • Favors chiral (twisted or non-collinear) spin configurations.
  • Anisotropy: $-\sum_{i} K, (\mathbf{S}_i\cdot \mathbf{n})^2$

    • $K$: Anisotropy constant.
    • $\mathbf{n}$: Preferred (easy) axis direction.
    • Encourages spins to align along the direction of $\mathbf{n}$.
  • Zeeman Term: $-\sum_i \mu_i, \mathbf{B}\cdot\mathbf{S}_i$

    • $\mu_i$: Magnetic moment at site $i$.
    • $\mathbf{B}$: External magnetic field.
    • Represents the interaction of the spins with an applied magnetic field.
  • Dipole–Dipole Interaction (DDI): $\frac{\mu_0}{4\pi}\sum_{i<j} \frac{\mu_i,\mu_j}{r_{ij}^3}\left[\mathbf{S}_i\cdot\mathbf{S}_j - 3, (\mathbf{S}i\cdot\hat{r}{ij})(\mathbf{S}j\cdot\hat{r}{ij})\right]$

    • $\mu_0$: Permeability of free space.
    • $\mu_i$ and $\mu_j$: Magnetic moments at sites $i$ and $j$. - $r_{ij}$:
    • Distance between spins at sites $i$ and $j$.
    • $\hat{r}_{ij}$: Unit vector pointing from site $i$ to site $j$.
    • Accounts for the long-range dipolar interaction between spins.

1.2 Landau-Lifshitz-Gilbert equation

  • The LLG equation governs the time evolution of magnetic moments (spins) in a material under the influence of effective magnetic fields. It can be written as $$ \frac{d\mathbf{S}}{dt} = -\frac{\gamma}{1+\alpha^2},\mathbf{S}\times\Bigl( \mathbf{H}{\mathrm{eff}} + \boldsymbol{\zeta}(t) \Bigr) -\frac{\gamma\alpha}{1+\alpha^2},\mathbf{S}\times\Bigl[\mathbf{S}\times\Bigl( \mathbf{H}{\mathrm{eff}} + \boldsymbol{\zeta}(t) \Bigr)\Bigr], $$

  • $\mathbf{S}$: Unit vector representing the spin.

  • $\mathbf{H}_{\mathrm{eff}}$: Effective magnetic field (includes contributions from exchange, anisotropy, Zeeman, etc.).

  • $\gamma$: Gyromagnetic ratio.

  • $\alpha$: Gilbert damping parameter.

  • $\boldsymbol{\zeta}(t)$: Stochastic thermal field representing thermal fluctuations.

  • The Langevin noise-term $\zeta(t)$ can be used to model the time-evolution of a spin system in the canonical (NVT) ensemble. It is a Gaussian noise term with zero mean and the correlation function $$ \langle \zeta_i(t) , \zeta_j(t') \rangle = \frac{2\alpha, k_B T}{\gamma \mu_s} , \delta_{ij}, \delta(t-t'), $$

1.3 Geodesic nudged elastic band method

TODO

1.4 HTST method

TODO

1.5 The Spirit code

TODO

2. Exercises

The exercised should be small and self-contained. They should be represented in Jupyter notebooks. TODO.

2.1 A small skyrmion

About

Notebooks for the Spirit tutorial.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published