Skip to content

Commit

Permalink
Add prototype: matrix-free vector Laplace solver using Kokkos (chaos-…
Browse files Browse the repository at this point in the history
  • Loading branch information
peterrum authored Aug 15, 2024
1 parent 93ec65f commit 59e6b02
Show file tree
Hide file tree
Showing 3 changed files with 354 additions and 0 deletions.
1 change: 1 addition & 0 deletions prototypes/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
add_subdirectory(chorin_navier_stokes)
add_subdirectory(direct_gls_navier_stokes)
add_subdirectory(direct_steady_navier_stokes)
add_subdirectory(kokkos_poisson)
add_subdirectory(matrix_based_non_linear_poisson)
add_subdirectory(matrix_free_non_linear_poisson)
add_subdirectory(matrix_based_advection_diffusion)
Expand Down
2 changes: 2 additions & 0 deletions prototypes/kokkos_poisson/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
add_executable(kokkos_poisson kokkos_poisson.cc)
deal_ii_setup_target(kokkos_poisson)
351 changes: 351 additions & 0 deletions prototypes/kokkos_poisson/kokkos_poisson.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,351 @@
/* ---------------------------------------------------------------------
*
* Copyright (C) 2024 by the Lethe authors
*
* This file is part of the Lethe library
*
* The Lethe library is free software; you can use it, redistribute
* it, and/or modify it under the terms of the GNU Lesser General
* Public License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
* The full text of the license can be found in the file LICENSE at
* the top level of the Lethe distribution.
*
* A simple matrix-free solver for solving a vector Laplace problem
* using Kokkos via Portable::MatrixFree and Porable::FEEvaluation.
*
* ---------------------------------------------------------------------*/

#include <deal.II/base/convergence_table.h>

#include <deal.II/distributed/fully_distributed_tria.h>
#include <deal.II/distributed/repartitioning_policy_tools.h>
#include <deal.II/distributed/tria.h>

#include <deal.II/dofs/dof_tools.h>

#include <deal.II/fe/fe_q.h>
#include <deal.II/fe/fe_system.h>

#include <deal.II/grid/grid_generator.h>

#include <deal.II/lac/precondition.h>
#include <deal.II/lac/solver_cg.h>

#include <deal.II/matrix_free/cuda_fe_evaluation.h>
#include <deal.II/matrix_free/cuda_matrix_free.h>
#include <deal.II/matrix_free/fe_evaluation.h>
#include <deal.II/matrix_free/matrix_free.h>

#include <deal.II/numerics/data_out.h>
#include <deal.II/numerics/vector_tools.h>

using namespace dealii;

static unsigned int counter = 0;

template <int dim,
int fe_degree,
int n_components,
typename Number,
typename MemorySpace>
class LaplaceOperator;

template <int dim, int fe_degree, int n_components, typename Number>
class LaplaceOperator<dim, fe_degree, n_components, Number, MemorySpace::Host>
{
public:
using VectorType =
LinearAlgebra::distributed::Vector<Number, MemorySpace::Host>;

LaplaceOperator() = default;

void
reinit(const Mapping<dim> &mapping,
const DoFHandler<dim> &dof_handler,
const AffineConstraints<Number> &constraints,
const Quadrature<1> &quadrature)
{
typename MatrixFree<dim, Number>::AdditionalData additional_data;
additional_data.mapping_update_flags = update_gradients;

matrix_free.reinit(
mapping, dof_handler, constraints, quadrature, additional_data);
}

void
initialize_dof_vector(VectorType &vec) const
{
matrix_free.initialize_dof_vector(vec);
}

void
vmult(VectorType &dst, const VectorType &src) const
{
matrix_free.cell_loop(&LaplaceOperator::local_apply, this, dst, src, true);
}

private:
void
local_apply(const MatrixFree<dim, Number> &data,
VectorType &dst,
const VectorType &src,
const std::pair<unsigned int, unsigned int> &cell_range) const
{
FEEvaluation<dim, fe_degree, fe_degree + 1, n_components, Number> phi(data);
for (unsigned int cell = cell_range.first; cell < cell_range.second; ++cell)
{
phi.reinit(cell);

phi.read_dof_values_plain(src);
phi.evaluate(EvaluationFlags::gradients);
for (unsigned int q = 0; q < phi.n_q_points; ++q)
phi.submit_gradient(phi.get_gradient(q), q);
phi.integrate(EvaluationFlags::gradients);
phi.distribute_local_to_global(dst);
}
}

MatrixFree<dim, Number> matrix_free;
};



template <int dim, int fe_degree, int n_components, typename Number>
class LaplaceOperatorQuad
{
public:
DEAL_II_HOST_DEVICE void
operator()(CUDAWrappers::
FEEvaluation<dim, fe_degree, fe_degree + 1, n_components, Number>
*fe_eval,
const int q_point) const
{
fe_eval->submit_gradient(fe_eval->get_gradient(q_point), q_point);
}
};

template <int dim, int fe_degree, int n_components, typename Number>
class LaplaceOperatorLocal
{
public:
DEAL_II_HOST_DEVICE void
operator()(
const unsigned int cell,
const typename CUDAWrappers::MatrixFree<dim, Number>::Data *gpu_data,
CUDAWrappers::SharedData<dim, Number> *shared_data,
const Number *src,
Number *dst) const
{
(void)cell; // TODO?

CUDAWrappers::
FEEvaluation<dim, fe_degree, fe_degree + 1, n_components, Number>
fe_eval(
/*cell,*/ gpu_data, shared_data);
fe_eval.read_dof_values(src);
fe_eval.evaluate(false, true);
fe_eval.apply_for_each_quad_point(
LaplaceOperatorQuad<dim, fe_degree, n_components, Number>());
fe_eval.integrate(false, true);
fe_eval.distribute_local_to_global(dst);
}
static const unsigned int n_dofs_1d = fe_degree + 1;
static const unsigned int n_local_dofs = Utilities::pow(fe_degree + 1, dim);
static const unsigned int n_q_points = Utilities::pow(fe_degree + 1, dim);
};

template <int dim, int fe_degree, int n_components, typename Number>
class LaplaceOperator<dim,
fe_degree,
n_components,
Number,
MemorySpace::Default>
{
public:
using VectorType =
LinearAlgebra::distributed::Vector<Number, MemorySpace::Default>;

LaplaceOperator() = default;

void
reinit(const Mapping<dim> &mapping,
const DoFHandler<dim> &dof_handler,
const AffineConstraints<Number> &constraints,
const Quadrature<1> &quadrature)
{
typename CUDAWrappers::MatrixFree<dim, Number>::AdditionalData
additional_data;
additional_data.mapping_update_flags = update_JxW_values | update_gradients;

matrix_free.reinit(
mapping, dof_handler, constraints, quadrature, additional_data);
}

void
initialize_dof_vector(VectorType &vec) const
{
matrix_free.initialize_dof_vector(vec);
}

void
vmult(VectorType &dst, const VectorType &src) const
{
dst = 0.0; // TODO: annoying
LaplaceOperatorLocal<dim, fe_degree, n_components, Number> local_operator;
matrix_free.cell_loop(local_operator, src, dst);
matrix_free.copy_constrained_values(src, dst); // TODO: annoying
}

private:
CUDAWrappers::MatrixFree<dim, Number> matrix_free;
};



template <int dim, typename T>
class AnalyticalFunction : public Function<dim, T>
{
public:
AnalyticalFunction(const unsigned int n_components)
: Function<dim, T>(n_components)
{}

virtual T
value(const Point<dim, T> &p, const unsigned int component = 0) const override
{
double temp = 0.0;

for (unsigned int d = 0; d < dim; ++d)
temp += std::sin(p[d]);

return temp * (1.0 + component);
}
};



template <unsigned int dim,
const int degree,
int n_components,
typename MemorySpace>
void
run(const unsigned int n_refinements, ConvergenceTable &table)
{
const MPI_Comm comm = MPI_COMM_WORLD;

using Number = double;
using VectorType = LinearAlgebra::distributed::Vector<Number, MemorySpace>;

parallel::distributed::Triangulation<dim> tria(comm);

GridGenerator::hyper_cube(tria);
tria.refine_global(n_refinements);

const MappingQ1<dim> mapping;
const FE_Q<dim> fe_q(degree);
const FESystem<dim> fe(fe_q, n_components);
const QGauss<dim> quadrature(degree + 1);

DoFHandler<dim> dof_handler(tria);
dof_handler.distribute_dofs(fe);

AffineConstraints<Number> constraints;
DoFTools::make_zero_boundary_constraints(dof_handler, constraints);
constraints.close();

LaplaceOperator<dim, degree, n_components, Number, MemorySpace>
laplace_operator;

laplace_operator.reinit(mapping,
dof_handler,
constraints,
quadrature.get_tensor_basis()[0]);

VectorType src, dst;

laplace_operator.initialize_dof_vector(src);
laplace_operator.initialize_dof_vector(dst);

{
LinearAlgebra::distributed::Vector<Number> src_host(src.get_partitioner());

VectorTools::create_right_hand_side<dim, dim>(
mapping,
dof_handler,
quadrature,
AnalyticalFunction<dim, Number>(n_components),
src_host,
constraints);

LinearAlgebra::ReadWriteVector<Number> rw_vector(
src.get_partitioner()->locally_owned_range());
rw_vector.import(src_host, VectorOperation::insert);
src.import(rw_vector, VectorOperation::insert);

dst = 0.0;
}

PreconditionIdentity preconditioner;

ReductionControl solver_control;
SolverCG<VectorType> solver(solver_control);
solver.solve(laplace_operator, dst, src, preconditioner);

{
LinearAlgebra::distributed::Vector<Number> dst_host(dst.get_partitioner());

LinearAlgebra::ReadWriteVector<Number> rw_vector(
src.get_partitioner()->locally_owned_range());
rw_vector.import(dst, VectorOperation::insert);
dst_host.import(rw_vector, VectorOperation::insert);

std::string file_name = "solution_" + std::to_string(counter++) + ".vtu";

DataOut<dim> data_out;

DataOutBase::VtkFlags flags;
flags.write_higher_order_cells = true;
data_out.set_flags(flags);

data_out.attach_dof_handler(dof_handler);
data_out.add_data_vector(dst_host, "solution");
data_out.build_patches(mapping,
degree + 1,
DataOut<dim>::CurvedCellRegion::curved_inner_cells);
data_out.write_vtu_in_parallel(file_name, MPI_COMM_WORLD);
}

table.add_value("fe_degree", degree);
table.add_value("n_refinements", n_refinements);
table.add_value("n_components", n_components);
table.add_value("n_dofs", dof_handler.n_dofs());

if (std::is_same_v<MemorySpace, dealii::MemorySpace::Host>)
table.add_value("version", "host");
else
table.add_value("version", "default");

table.add_value("norm", dst.l2_norm());
}

int
main(int argc, char **argv)
{
Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv, 1);

const unsigned int dim = 2;
const unsigned int fe_degree = 3;
unsigned int n_refinements = 3;

ConvergenceTable table;

run<dim, fe_degree, 1, MemorySpace::Host>(n_refinements, table);
run<dim, fe_degree, 1, MemorySpace::Default>(n_refinements, table);
run<dim, fe_degree, dim, MemorySpace::Host>(n_refinements, table);
run<dim, fe_degree, dim, MemorySpace::Default>(n_refinements, table);
run<dim, fe_degree, dim + 1, MemorySpace::Host>(n_refinements, table);
run<dim, fe_degree, dim + 1, MemorySpace::Default>(n_refinements, table);

table.write_text(std::cout);
}

0 comments on commit 59e6b02

Please sign in to comment.