forked from chaos-polymtl/lethe
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add prototype: matrix-free vector Laplace solver using Kokkos (chaos-…
- Loading branch information
Showing
3 changed files
with
354 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
add_executable(kokkos_poisson kokkos_poisson.cc) | ||
deal_ii_setup_target(kokkos_poisson) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,351 @@ | ||
/* --------------------------------------------------------------------- | ||
* | ||
* Copyright (C) 2024 by the Lethe authors | ||
* | ||
* This file is part of the Lethe library | ||
* | ||
* The Lethe library is free software; you can use it, redistribute | ||
* it, and/or modify it under the terms of the GNU Lesser General | ||
* Public License as published by the Free Software Foundation; either | ||
* version 2.1 of the License, or (at your option) any later version. | ||
* The full text of the license can be found in the file LICENSE at | ||
* the top level of the Lethe distribution. | ||
* | ||
* A simple matrix-free solver for solving a vector Laplace problem | ||
* using Kokkos via Portable::MatrixFree and Porable::FEEvaluation. | ||
* | ||
* ---------------------------------------------------------------------*/ | ||
|
||
#include <deal.II/base/convergence_table.h> | ||
|
||
#include <deal.II/distributed/fully_distributed_tria.h> | ||
#include <deal.II/distributed/repartitioning_policy_tools.h> | ||
#include <deal.II/distributed/tria.h> | ||
|
||
#include <deal.II/dofs/dof_tools.h> | ||
|
||
#include <deal.II/fe/fe_q.h> | ||
#include <deal.II/fe/fe_system.h> | ||
|
||
#include <deal.II/grid/grid_generator.h> | ||
|
||
#include <deal.II/lac/precondition.h> | ||
#include <deal.II/lac/solver_cg.h> | ||
|
||
#include <deal.II/matrix_free/cuda_fe_evaluation.h> | ||
#include <deal.II/matrix_free/cuda_matrix_free.h> | ||
#include <deal.II/matrix_free/fe_evaluation.h> | ||
#include <deal.II/matrix_free/matrix_free.h> | ||
|
||
#include <deal.II/numerics/data_out.h> | ||
#include <deal.II/numerics/vector_tools.h> | ||
|
||
using namespace dealii; | ||
|
||
static unsigned int counter = 0; | ||
|
||
template <int dim, | ||
int fe_degree, | ||
int n_components, | ||
typename Number, | ||
typename MemorySpace> | ||
class LaplaceOperator; | ||
|
||
template <int dim, int fe_degree, int n_components, typename Number> | ||
class LaplaceOperator<dim, fe_degree, n_components, Number, MemorySpace::Host> | ||
{ | ||
public: | ||
using VectorType = | ||
LinearAlgebra::distributed::Vector<Number, MemorySpace::Host>; | ||
|
||
LaplaceOperator() = default; | ||
|
||
void | ||
reinit(const Mapping<dim> &mapping, | ||
const DoFHandler<dim> &dof_handler, | ||
const AffineConstraints<Number> &constraints, | ||
const Quadrature<1> &quadrature) | ||
{ | ||
typename MatrixFree<dim, Number>::AdditionalData additional_data; | ||
additional_data.mapping_update_flags = update_gradients; | ||
|
||
matrix_free.reinit( | ||
mapping, dof_handler, constraints, quadrature, additional_data); | ||
} | ||
|
||
void | ||
initialize_dof_vector(VectorType &vec) const | ||
{ | ||
matrix_free.initialize_dof_vector(vec); | ||
} | ||
|
||
void | ||
vmult(VectorType &dst, const VectorType &src) const | ||
{ | ||
matrix_free.cell_loop(&LaplaceOperator::local_apply, this, dst, src, true); | ||
} | ||
|
||
private: | ||
void | ||
local_apply(const MatrixFree<dim, Number> &data, | ||
VectorType &dst, | ||
const VectorType &src, | ||
const std::pair<unsigned int, unsigned int> &cell_range) const | ||
{ | ||
FEEvaluation<dim, fe_degree, fe_degree + 1, n_components, Number> phi(data); | ||
for (unsigned int cell = cell_range.first; cell < cell_range.second; ++cell) | ||
{ | ||
phi.reinit(cell); | ||
|
||
phi.read_dof_values_plain(src); | ||
phi.evaluate(EvaluationFlags::gradients); | ||
for (unsigned int q = 0; q < phi.n_q_points; ++q) | ||
phi.submit_gradient(phi.get_gradient(q), q); | ||
phi.integrate(EvaluationFlags::gradients); | ||
phi.distribute_local_to_global(dst); | ||
} | ||
} | ||
|
||
MatrixFree<dim, Number> matrix_free; | ||
}; | ||
|
||
|
||
|
||
template <int dim, int fe_degree, int n_components, typename Number> | ||
class LaplaceOperatorQuad | ||
{ | ||
public: | ||
DEAL_II_HOST_DEVICE void | ||
operator()(CUDAWrappers:: | ||
FEEvaluation<dim, fe_degree, fe_degree + 1, n_components, Number> | ||
*fe_eval, | ||
const int q_point) const | ||
{ | ||
fe_eval->submit_gradient(fe_eval->get_gradient(q_point), q_point); | ||
} | ||
}; | ||
|
||
template <int dim, int fe_degree, int n_components, typename Number> | ||
class LaplaceOperatorLocal | ||
{ | ||
public: | ||
DEAL_II_HOST_DEVICE void | ||
operator()( | ||
const unsigned int cell, | ||
const typename CUDAWrappers::MatrixFree<dim, Number>::Data *gpu_data, | ||
CUDAWrappers::SharedData<dim, Number> *shared_data, | ||
const Number *src, | ||
Number *dst) const | ||
{ | ||
(void)cell; // TODO? | ||
|
||
CUDAWrappers:: | ||
FEEvaluation<dim, fe_degree, fe_degree + 1, n_components, Number> | ||
fe_eval( | ||
/*cell,*/ gpu_data, shared_data); | ||
fe_eval.read_dof_values(src); | ||
fe_eval.evaluate(false, true); | ||
fe_eval.apply_for_each_quad_point( | ||
LaplaceOperatorQuad<dim, fe_degree, n_components, Number>()); | ||
fe_eval.integrate(false, true); | ||
fe_eval.distribute_local_to_global(dst); | ||
} | ||
static const unsigned int n_dofs_1d = fe_degree + 1; | ||
static const unsigned int n_local_dofs = Utilities::pow(fe_degree + 1, dim); | ||
static const unsigned int n_q_points = Utilities::pow(fe_degree + 1, dim); | ||
}; | ||
|
||
template <int dim, int fe_degree, int n_components, typename Number> | ||
class LaplaceOperator<dim, | ||
fe_degree, | ||
n_components, | ||
Number, | ||
MemorySpace::Default> | ||
{ | ||
public: | ||
using VectorType = | ||
LinearAlgebra::distributed::Vector<Number, MemorySpace::Default>; | ||
|
||
LaplaceOperator() = default; | ||
|
||
void | ||
reinit(const Mapping<dim> &mapping, | ||
const DoFHandler<dim> &dof_handler, | ||
const AffineConstraints<Number> &constraints, | ||
const Quadrature<1> &quadrature) | ||
{ | ||
typename CUDAWrappers::MatrixFree<dim, Number>::AdditionalData | ||
additional_data; | ||
additional_data.mapping_update_flags = update_JxW_values | update_gradients; | ||
|
||
matrix_free.reinit( | ||
mapping, dof_handler, constraints, quadrature, additional_data); | ||
} | ||
|
||
void | ||
initialize_dof_vector(VectorType &vec) const | ||
{ | ||
matrix_free.initialize_dof_vector(vec); | ||
} | ||
|
||
void | ||
vmult(VectorType &dst, const VectorType &src) const | ||
{ | ||
dst = 0.0; // TODO: annoying | ||
LaplaceOperatorLocal<dim, fe_degree, n_components, Number> local_operator; | ||
matrix_free.cell_loop(local_operator, src, dst); | ||
matrix_free.copy_constrained_values(src, dst); // TODO: annoying | ||
} | ||
|
||
private: | ||
CUDAWrappers::MatrixFree<dim, Number> matrix_free; | ||
}; | ||
|
||
|
||
|
||
template <int dim, typename T> | ||
class AnalyticalFunction : public Function<dim, T> | ||
{ | ||
public: | ||
AnalyticalFunction(const unsigned int n_components) | ||
: Function<dim, T>(n_components) | ||
{} | ||
|
||
virtual T | ||
value(const Point<dim, T> &p, const unsigned int component = 0) const override | ||
{ | ||
double temp = 0.0; | ||
|
||
for (unsigned int d = 0; d < dim; ++d) | ||
temp += std::sin(p[d]); | ||
|
||
return temp * (1.0 + component); | ||
} | ||
}; | ||
|
||
|
||
|
||
template <unsigned int dim, | ||
const int degree, | ||
int n_components, | ||
typename MemorySpace> | ||
void | ||
run(const unsigned int n_refinements, ConvergenceTable &table) | ||
{ | ||
const MPI_Comm comm = MPI_COMM_WORLD; | ||
|
||
using Number = double; | ||
using VectorType = LinearAlgebra::distributed::Vector<Number, MemorySpace>; | ||
|
||
parallel::distributed::Triangulation<dim> tria(comm); | ||
|
||
GridGenerator::hyper_cube(tria); | ||
tria.refine_global(n_refinements); | ||
|
||
const MappingQ1<dim> mapping; | ||
const FE_Q<dim> fe_q(degree); | ||
const FESystem<dim> fe(fe_q, n_components); | ||
const QGauss<dim> quadrature(degree + 1); | ||
|
||
DoFHandler<dim> dof_handler(tria); | ||
dof_handler.distribute_dofs(fe); | ||
|
||
AffineConstraints<Number> constraints; | ||
DoFTools::make_zero_boundary_constraints(dof_handler, constraints); | ||
constraints.close(); | ||
|
||
LaplaceOperator<dim, degree, n_components, Number, MemorySpace> | ||
laplace_operator; | ||
|
||
laplace_operator.reinit(mapping, | ||
dof_handler, | ||
constraints, | ||
quadrature.get_tensor_basis()[0]); | ||
|
||
VectorType src, dst; | ||
|
||
laplace_operator.initialize_dof_vector(src); | ||
laplace_operator.initialize_dof_vector(dst); | ||
|
||
{ | ||
LinearAlgebra::distributed::Vector<Number> src_host(src.get_partitioner()); | ||
|
||
VectorTools::create_right_hand_side<dim, dim>( | ||
mapping, | ||
dof_handler, | ||
quadrature, | ||
AnalyticalFunction<dim, Number>(n_components), | ||
src_host, | ||
constraints); | ||
|
||
LinearAlgebra::ReadWriteVector<Number> rw_vector( | ||
src.get_partitioner()->locally_owned_range()); | ||
rw_vector.import(src_host, VectorOperation::insert); | ||
src.import(rw_vector, VectorOperation::insert); | ||
|
||
dst = 0.0; | ||
} | ||
|
||
PreconditionIdentity preconditioner; | ||
|
||
ReductionControl solver_control; | ||
SolverCG<VectorType> solver(solver_control); | ||
solver.solve(laplace_operator, dst, src, preconditioner); | ||
|
||
{ | ||
LinearAlgebra::distributed::Vector<Number> dst_host(dst.get_partitioner()); | ||
|
||
LinearAlgebra::ReadWriteVector<Number> rw_vector( | ||
src.get_partitioner()->locally_owned_range()); | ||
rw_vector.import(dst, VectorOperation::insert); | ||
dst_host.import(rw_vector, VectorOperation::insert); | ||
|
||
std::string file_name = "solution_" + std::to_string(counter++) + ".vtu"; | ||
|
||
DataOut<dim> data_out; | ||
|
||
DataOutBase::VtkFlags flags; | ||
flags.write_higher_order_cells = true; | ||
data_out.set_flags(flags); | ||
|
||
data_out.attach_dof_handler(dof_handler); | ||
data_out.add_data_vector(dst_host, "solution"); | ||
data_out.build_patches(mapping, | ||
degree + 1, | ||
DataOut<dim>::CurvedCellRegion::curved_inner_cells); | ||
data_out.write_vtu_in_parallel(file_name, MPI_COMM_WORLD); | ||
} | ||
|
||
table.add_value("fe_degree", degree); | ||
table.add_value("n_refinements", n_refinements); | ||
table.add_value("n_components", n_components); | ||
table.add_value("n_dofs", dof_handler.n_dofs()); | ||
|
||
if (std::is_same_v<MemorySpace, dealii::MemorySpace::Host>) | ||
table.add_value("version", "host"); | ||
else | ||
table.add_value("version", "default"); | ||
|
||
table.add_value("norm", dst.l2_norm()); | ||
} | ||
|
||
int | ||
main(int argc, char **argv) | ||
{ | ||
Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv, 1); | ||
|
||
const unsigned int dim = 2; | ||
const unsigned int fe_degree = 3; | ||
unsigned int n_refinements = 3; | ||
|
||
ConvergenceTable table; | ||
|
||
run<dim, fe_degree, 1, MemorySpace::Host>(n_refinements, table); | ||
run<dim, fe_degree, 1, MemorySpace::Default>(n_refinements, table); | ||
run<dim, fe_degree, dim, MemorySpace::Host>(n_refinements, table); | ||
run<dim, fe_degree, dim, MemorySpace::Default>(n_refinements, table); | ||
run<dim, fe_degree, dim + 1, MemorySpace::Host>(n_refinements, table); | ||
run<dim, fe_degree, dim + 1, MemorySpace::Default>(n_refinements, table); | ||
|
||
table.write_text(std::cout); | ||
} |