Skip to content

Python implementation of "A Correlation-Based Feature Weighting Filter for Naive Bayes"

Notifications You must be signed in to change notification settings

LucasKirsten/CBFW_Naive_Bayes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Implementation of "A Correlation-Based Feature Weighting Filter for Naive Bayes" (Liangxiao Jiang et al.)

Getting started

Run the following command to install the dependecies:

pip install -r requirements.txt

The CBFW classificator was implemented following the standards of Scikit learn. For a example of usage please refer to the notebook example.ipynb.

Results

Accuracy results (%):

Dataset Paper Mine
anneal 98,5 91,87
anneal.ORIG 94,60 91,90
audiology 74,22 70,15
autos 77,95 72,81
balance-scale 73,76 90,72
breast-cancer 72,46 72,49
breast-w 97,14 97,34
colic 83,34 83,22
colic.ORIG 73,70 73,05
credit-a 86,99 86,59
credit-g 75,70 75,11
diabetes 78,01 66,82
glass 73,37 97,79
heart-c 82,94 82,58
heart-h 83,82 83,99
heart-statlog 83,44 82,78
hepatitis 85,95 84,29
hypothyroid 98,56 98,93
ionosphere 91,82 91,39
iris 94,40 94,20
kr-vs-kp 93,58 93,52
labor 92,10 89,75
letter 75,22 75,66
lymphography 84,81 81,72
mushroom 99,19 99,88
primary-tumor 47,20 45,05
segment 93,47 86,90
sick 97,36 97,26
sonar 82,56 75,39
soybean 93,66 92,40
splice 96,19 96,13
vehicle 62,91 61,08
votes 92,11 92,14
vowel 68,84 62,33
waveform-5000 83,11 82,10
zoo 95,96 96,45

Elapsed time (seconds):

Dataset Paper Mine
audiology 5,28 2,18
balance-scale 0,09 0,0053
breast-cancer 0,18 0,051
breast-w 0,21 5,56
colic,ORIG 0,99 0,43
credit-a 0,46 0,15
credit-g 1 0,36
diabetes 0,23 12,87
glass 0,19 0,015
heart-c 0,22 0,031
heart-h 0,25 0,024
heart-statlog 0,11 0,0093
hepatitis 0,25 0,029
ionosphere 1,69 0,15
iris 0,12 0,0021
kr-vs-kp 6,82 1,21
letter 29,13 5,6
lymphography 0,35 0,032
mushroom 12,08 7,78
primary-tumor 0,43 0,088
segment 4,41 0,05
sonar 1,59 0,069
waveform-5000 17,4 0,46
zoo 0,27 0,015

About

Python implementation of "A Correlation-Based Feature Weighting Filter for Naive Bayes"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published