Implementation of "A Correlation-Based Feature Weighting Filter for Naive Bayes" (Liangxiao Jiang et al.)
Run the following command to install the dependecies:
pip install -r requirements.txt
The CBFW classificator was implemented following the standards of Scikit learn. For a example
of usage please refer to the notebook example.ipynb
.
Dataset | Paper | Mine |
---|---|---|
anneal | 98,5 | 91,87 |
anneal.ORIG | 94,60 | 91,90 |
audiology | 74,22 | 70,15 |
autos | 77,95 | 72,81 |
balance-scale | 73,76 | 90,72 |
breast-cancer | 72,46 | 72,49 |
breast-w | 97,14 | 97,34 |
colic | 83,34 | 83,22 |
colic.ORIG | 73,70 | 73,05 |
credit-a | 86,99 | 86,59 |
credit-g | 75,70 | 75,11 |
diabetes | 78,01 | 66,82 |
glass | 73,37 | 97,79 |
heart-c | 82,94 | 82,58 |
heart-h | 83,82 | 83,99 |
heart-statlog | 83,44 | 82,78 |
hepatitis | 85,95 | 84,29 |
hypothyroid | 98,56 | 98,93 |
ionosphere | 91,82 | 91,39 |
iris | 94,40 | 94,20 |
kr-vs-kp | 93,58 | 93,52 |
labor | 92,10 | 89,75 |
letter | 75,22 | 75,66 |
lymphography | 84,81 | 81,72 |
mushroom | 99,19 | 99,88 |
primary-tumor | 47,20 | 45,05 |
segment | 93,47 | 86,90 |
sick | 97,36 | 97,26 |
sonar | 82,56 | 75,39 |
soybean | 93,66 | 92,40 |
splice | 96,19 | 96,13 |
vehicle | 62,91 | 61,08 |
votes | 92,11 | 92,14 |
vowel | 68,84 | 62,33 |
waveform-5000 | 83,11 | 82,10 |
zoo | 95,96 | 96,45 |
Dataset | Paper | Mine |
---|---|---|
audiology | 5,28 | 2,18 |
balance-scale | 0,09 | 0,0053 |
breast-cancer | 0,18 | 0,051 |
breast-w | 0,21 | 5,56 |
colic,ORIG | 0,99 | 0,43 |
credit-a | 0,46 | 0,15 |
credit-g | 1 | 0,36 |
diabetes | 0,23 | 12,87 |
glass | 0,19 | 0,015 |
heart-c | 0,22 | 0,031 |
heart-h | 0,25 | 0,024 |
heart-statlog | 0,11 | 0,0093 |
hepatitis | 0,25 | 0,029 |
ionosphere | 1,69 | 0,15 |
iris | 0,12 | 0,0021 |
kr-vs-kp | 6,82 | 1,21 |
letter | 29,13 | 5,6 |
lymphography | 0,35 | 0,032 |
mushroom | 12,08 | 7,78 |
primary-tumor | 0,43 | 0,088 |
segment | 4,41 | 0,05 |
sonar | 1,59 | 0,069 |
waveform-5000 | 17,4 | 0,46 |
zoo | 0,27 | 0,015 |