Skip to content
This repository has been archived by the owner on Oct 9, 2023. It is now read-only.

Commit

Permalink
Clear metadata
Browse files Browse the repository at this point in the history
  • Loading branch information
ethanwharris committed May 8, 2021
1 parent edee7ce commit f98318c
Show file tree
Hide file tree
Showing 5 changed files with 37 additions and 371 deletions.
19 changes: 1 addition & 18 deletions flash_notebooks/custom_task_tutorial.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -374,24 +374,7 @@
]
}
],
"metadata": {
"kernelspec": {
"name": "python385jvsc74a57bd0db7cb6f8b99581485a229201158c5b3d87043825d76fdd729161e90706f71f5a",
"display_name": "Python 3.8.5 64-bit ('.venv')"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}
143 changes: 13 additions & 130 deletions flash_notebooks/generic_task.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "foreign-design",
"metadata": {},
"outputs": [],
Expand All @@ -60,7 +60,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"id": "mathematical-barbados",
"metadata": {},
"outputs": [],
Expand All @@ -83,7 +83,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"id": "selective-request",
"metadata": {},
"outputs": [],
Expand All @@ -106,7 +106,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"id": "stunning-anime",
"metadata": {},
"outputs": [],
Expand All @@ -124,7 +124,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"id": "hispanic-independence",
"metadata": {},
"outputs": [],
Expand All @@ -142,7 +142,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"id": "literary-destruction",
"metadata": {},
"outputs": [],
Expand All @@ -160,21 +160,10 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"id": "public-berlin",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"GPU available: True, used: False\n",
"TPU available: False, using: 0 TPU cores\n",
"/home/edgar/software/lightning-flash/.venv/lib/python3.8/site-packages/pytorch_lightning/utilities/distributed.py:68: UserWarning: GPU available but not used. Set the gpus flag in your trainer `Trainer(gpus=1)` or script `--gpus=1`.\n",
" warnings.warn(*args, **kwargs)\n"
]
}
],
"outputs": [],
"source": [
"trainer = pl.Trainer(\n",
" max_epochs=10,\n",
Expand All @@ -193,85 +182,10 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": null,
"id": "neural-genre",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"\n",
" | Name | Type | Params\n",
"---------------------------------------\n",
"0 | model | Sequential | 101 K \n",
"1 | metrics | ModuleDict | 0 \n",
"---------------------------------------\n",
"101 K Trainable params\n",
"0 Non-trainable params\n",
"101 K Total params\n",
"0.407 Total estimated model params size (MB)\n",
"Epoch 0: 14%|█▎ | 35/256 [00:00<00:01, 217.40it/s, loss=2.4, v_num=26, val_accuracy=0.000, val_cross_entropy=2.280, train_accuracy_step=0.000, train_cross_entropy_step=2.130] /home/edgar/software/lightning-flash/.venv/lib/python3.8/site-packages/pytorch_lightning/utilities/distributed.py:68: UserWarning: The dataloader, val dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n",
" warnings.warn(*args, **kwargs)\n",
"/home/edgar/software/lightning-flash/.venv/lib/python3.8/site-packages/pytorch_lightning/utilities/distributed.py:68: UserWarning: The dataloader, train dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n",
" warnings.warn(*args, **kwargs)\n",
"Epoch 0: 50%|█████ | 128/256 [00:00<00:00, 203.95it/s, loss=1.68, v_num=26, val_accuracy=0.000, val_cross_entropy=2.280, train_accuracy_step=0.000, train_cross_entropy_step=4.150]\n",
"Validating: 0it [00:00, ?it/s]\u001b[A\n",
"Epoch 0: 52%|█████▏ | 132/256 [00:00<00:00, 202.98it/s, loss=1.68, v_num=26, val_accuracy=0.000, val_cross_entropy=2.280, train_accuracy_step=0.000, train_cross_entropy_step=4.150]\n",
"Epoch 0: 74%|███████▍ | 189/256 [00:00<00:00, 251.55it/s, loss=1.68, v_num=26, val_accuracy=0.000, val_cross_entropy=2.280, train_accuracy_step=0.000, train_cross_entropy_step=4.150]\n",
"Epoch 0: 100%|██████████| 256/256 [00:00<00:00, 297.31it/s, loss=1.68, v_num=26, val_accuracy=0.359, val_cross_entropy=1.690, train_accuracy_step=0.000, train_cross_entropy_step=2.510, train_accuracy_epoch=0.344, train_cross_entropy_epoch=2.050]\n",
"Epoch 1: 50%|█████ | 128/256 [00:00<00:00, 182.66it/s, loss=0.809, v_num=26, val_accuracy=0.359, val_cross_entropy=1.690, train_accuracy_step=1.000, train_cross_entropy_step=0.851, train_accuracy_epoch=0.344, train_cross_entropy_epoch=2.050] \n",
"Validating: 0it [00:00, ?it/s]\u001b[A\n",
"Epoch 1: 75%|███████▌ | 193/256 [00:00<00:00, 241.14it/s, loss=0.809, v_num=26, val_accuracy=0.359, val_cross_entropy=1.690, train_accuracy_step=1.000, train_cross_entropy_step=0.851, train_accuracy_epoch=0.344, train_cross_entropy_epoch=2.050]\n",
"Epoch 1: 100%|██████████| 256/256 [00:00<00:00, 288.24it/s, loss=0.809, v_num=26, val_accuracy=0.484, val_cross_entropy=1.680, train_accuracy_step=0.000, train_cross_entropy_step=2.670, train_accuracy_epoch=0.633, train_cross_entropy_epoch=1.090]\n",
"Epoch 2: 50%|█████ | 128/256 [00:00<00:00, 194.30it/s, loss=0.458, v_num=26, val_accuracy=0.484, val_cross_entropy=1.680, train_accuracy_step=1.000, train_cross_entropy_step=0.294, train_accuracy_epoch=0.633, train_cross_entropy_epoch=1.090] \n",
"Validating: 0it [00:00, ?it/s]\u001b[A\n",
"Epoch 2: 51%|█████ | 130/256 [00:00<00:00, 188.73it/s, loss=0.458, v_num=26, val_accuracy=0.484, val_cross_entropy=1.680, train_accuracy_step=1.000, train_cross_entropy_step=0.294, train_accuracy_epoch=0.633, train_cross_entropy_epoch=1.090]\n",
"Epoch 2: 100%|██████████| 256/256 [00:00<00:00, 294.59it/s, loss=0.458, v_num=26, val_accuracy=0.508, val_cross_entropy=1.850, train_accuracy_step=1.000, train_cross_entropy_step=0.649, train_accuracy_epoch=0.789, train_cross_entropy_epoch=0.549]\n",
"Epoch 3: 50%|█████ | 128/256 [00:00<00:00, 200.81it/s, loss=0.358, v_num=26, val_accuracy=0.508, val_cross_entropy=1.850, train_accuracy_step=1.000, train_cross_entropy_step=0.0079, train_accuracy_epoch=0.789, train_cross_entropy_epoch=0.549] \n",
"Validating: 0it [00:00, ?it/s]\u001b[A\n",
"Epoch 3: 56%|█████▋ | 144/256 [00:00<00:00, 215.08it/s, loss=0.358, v_num=26, val_accuracy=0.508, val_cross_entropy=1.850, train_accuracy_step=1.000, train_cross_entropy_step=0.0079, train_accuracy_epoch=0.789, train_cross_entropy_epoch=0.549]\n",
"Epoch 3: 100%|██████████| 256/256 [00:00<00:00, 309.92it/s, loss=0.358, v_num=26, val_accuracy=0.602, val_cross_entropy=1.670, train_accuracy_step=0.000, train_cross_entropy_step=0.726, train_accuracy_epoch=0.875, train_cross_entropy_epoch=0.473] \n",
"Epoch 4: 50%|█████ | 128/256 [00:00<00:00, 209.98it/s, loss=0.166, v_num=26, val_accuracy=0.602, val_cross_entropy=1.670, train_accuracy_step=1.000, train_cross_entropy_step=0.105, train_accuracy_epoch=0.875, train_cross_entropy_epoch=0.473] \n",
"Validating: 0it [00:00, ?it/s]\u001b[A\n",
"Epoch 4: 57%|█████▋ | 146/256 [00:00<00:00, 225.27it/s, loss=0.166, v_num=26, val_accuracy=0.602, val_cross_entropy=1.670, train_accuracy_step=1.000, train_cross_entropy_step=0.105, train_accuracy_epoch=0.875, train_cross_entropy_epoch=0.473]\n",
"Epoch 4: 100%|██████████| 256/256 [00:00<00:00, 317.78it/s, loss=0.166, v_num=26, val_accuracy=0.641, val_cross_entropy=1.500, train_accuracy_step=1.000, train_cross_entropy_step=0.00293, train_accuracy_epoch=0.938, train_cross_entropy_epoch=0.210]\n",
"Epoch 5: 50%|█████ | 128/256 [00:00<00:00, 185.66it/s, loss=0.0797, v_num=26, val_accuracy=0.641, val_cross_entropy=1.500, train_accuracy_step=1.000, train_cross_entropy_step=0.0154, train_accuracy_epoch=0.938, train_cross_entropy_epoch=0.210]\n",
"Validating: 0it [00:00, ?it/s]\u001b[A\n",
"Epoch 5: 57%|█████▋ | 146/256 [00:00<00:00, 199.74it/s, loss=0.0797, v_num=26, val_accuracy=0.641, val_cross_entropy=1.500, train_accuracy_step=1.000, train_cross_entropy_step=0.0154, train_accuracy_epoch=0.938, train_cross_entropy_epoch=0.210]\n",
"Epoch 5: 100%|██████████| 256/256 [00:00<00:00, 284.90it/s, loss=0.0797, v_num=26, val_accuracy=0.586, val_cross_entropy=2.010, train_accuracy_step=1.000, train_cross_entropy_step=0.00443, train_accuracy_epoch=0.953, train_cross_entropy_epoch=0.119]\n",
"Epoch 6: 50%|█████ | 128/256 [00:00<00:00, 178.55it/s, loss=0.0912, v_num=26, val_accuracy=0.586, val_cross_entropy=2.010, train_accuracy_step=1.000, train_cross_entropy_step=0.0729, train_accuracy_epoch=0.953, train_cross_entropy_epoch=0.119]\n",
"Validating: 0it [00:00, ?it/s]\u001b[A\n",
"Epoch 6: 57%|█████▋ | 146/256 [00:00<00:00, 191.48it/s, loss=0.0912, v_num=26, val_accuracy=0.586, val_cross_entropy=2.010, train_accuracy_step=1.000, train_cross_entropy_step=0.0729, train_accuracy_epoch=0.953, train_cross_entropy_epoch=0.119]\n",
"Epoch 6: 100%|██████████| 256/256 [00:00<00:00, 274.04it/s, loss=0.0912, v_num=26, val_accuracy=0.594, val_cross_entropy=2.020, train_accuracy_step=1.000, train_cross_entropy_step=0.129, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.146] \n",
"Epoch 7: 50%|█████ | 128/256 [00:00<00:00, 169.42it/s, loss=0.106, v_num=26, val_accuracy=0.594, val_cross_entropy=2.020, train_accuracy_step=1.000, train_cross_entropy_step=0.051, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.146] \n",
"Validating: 0it [00:00, ?it/s]\u001b[A\n",
"Epoch 7: 57%|█████▋ | 146/256 [00:00<00:00, 182.27it/s, loss=0.106, v_num=26, val_accuracy=0.594, val_cross_entropy=2.020, train_accuracy_step=1.000, train_cross_entropy_step=0.051, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.146]\n",
"Epoch 7: 86%|████████▌ | 219/256 [00:00<00:00, 237.78it/s, loss=0.106, v_num=26, val_accuracy=0.594, val_cross_entropy=2.020, train_accuracy_step=1.000, train_cross_entropy_step=0.051, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.146]\n",
"Epoch 7: 100%|██████████| 256/256 [00:00<00:00, 259.69it/s, loss=0.106, v_num=26, val_accuracy=0.586, val_cross_entropy=2.420, train_accuracy_step=1.000, train_cross_entropy_step=8.46e-6, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.178]\n",
"Epoch 8: 50%|█████ | 128/256 [00:00<00:00, 170.78it/s, loss=0.068, v_num=26, val_accuracy=0.586, val_cross_entropy=2.420, train_accuracy_step=1.000, train_cross_entropy_step=0.00895, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.178]\n",
"Validating: 0it [00:00, ?it/s]\u001b[A\n",
"Epoch 8: 57%|█████▋ | 146/256 [00:00<00:00, 183.98it/s, loss=0.068, v_num=26, val_accuracy=0.586, val_cross_entropy=2.420, train_accuracy_step=1.000, train_cross_entropy_step=0.00895, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.178]\n",
"Epoch 8: 86%|████████▌ | 219/256 [00:00<00:00, 240.22it/s, loss=0.068, v_num=26, val_accuracy=0.586, val_cross_entropy=2.420, train_accuracy_step=1.000, train_cross_entropy_step=0.00895, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.178]\n",
"Epoch 8: 100%|██████████| 256/256 [00:00<00:00, 262.77it/s, loss=0.068, v_num=26, val_accuracy=0.656, val_cross_entropy=1.890, train_accuracy_step=1.000, train_cross_entropy_step=3.76e-5, train_accuracy_epoch=0.953, train_cross_entropy_epoch=0.150]\n",
"Epoch 9: 50%|█████ | 128/256 [00:00<00:00, 195.85it/s, loss=0.0109, v_num=26, val_accuracy=0.656, val_cross_entropy=1.890, train_accuracy_step=1.000, train_cross_entropy_step=0.00395, train_accuracy_epoch=0.953, train_cross_entropy_epoch=0.150]\n",
"Validating: 0it [00:00, ?it/s]\u001b[A\n",
"Epoch 9: 57%|█████▋ | 146/256 [00:00<00:00, 208.94it/s, loss=0.0109, v_num=26, val_accuracy=0.656, val_cross_entropy=1.890, train_accuracy_step=1.000, train_cross_entropy_step=0.00395, train_accuracy_epoch=0.953, train_cross_entropy_epoch=0.150]\n",
"Epoch 9: 100%|██████████| 256/256 [00:00<00:00, 299.16it/s, loss=0.0109, v_num=26, val_accuracy=0.641, val_cross_entropy=2.290, train_accuracy_step=1.000, train_cross_entropy_step=2.74e-5, train_accuracy_epoch=0.992, train_cross_entropy_epoch=0.0366]\n",
"Epoch 9: 100%|██████████| 256/256 [00:00<00:00, 297.26it/s, loss=0.0109, v_num=26, val_accuracy=0.641, val_cross_entropy=2.290, train_accuracy_step=1.000, train_cross_entropy_step=2.74e-5, train_accuracy_epoch=0.992, train_cross_entropy_epoch=0.0366]\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"1"
]
},
"metadata": {},
"execution_count": 8
}
],
"outputs": [],
"source": [
"trainer.fit(classifier, DataLoader(train), DataLoader(val))"
]
Expand All @@ -286,24 +200,10 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": null,
"id": "ideal-johnson",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Testing: 1%| | 58/4975 [00:00<00:08, 575.00it/s]/home/edgar/software/lightning-flash/.venv/lib/python3.8/site-packages/pytorch_lightning/utilities/distributed.py:68: UserWarning: The dataloader, test dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n",
" warnings.warn(*args, **kwargs)\n",
"Testing: 100%|██████████| 4975/4975 [00:06<00:00, 768.58it/s]\n",
"--------------------------------------------------------------------------------\n",
"DATALOADER:0 TEST RESULTS\n",
"{'test_accuracy': 0.72120600938797, 'test_cross_entropy': 1.481386661529541}\n",
"--------------------------------------------------------------------------------\n"
]
}
],
"outputs": [],
"source": [
"results = trainer.test(classifier, test_dataloaders=DataLoader(test))"
]
Expand Down Expand Up @@ -350,24 +250,7 @@
]
}
],
"metadata": {
"kernelspec": {
"name": "python385jvsc74a57bd0db7cb6f8b99581485a229201158c5b3d87043825d76fdd729161e90706f71f5a",
"display_name": "Python 3.8.5 64-bit ('.venv')"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
19 changes: 1 addition & 18 deletions flash_notebooks/image_classification.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -355,24 +355,7 @@
]
}
],
"metadata": {
"kernelspec": {
"name": "python385jvsc74a57bd0db7cb6f8b99581485a229201158c5b3d87043825d76fdd729161e90706f71f5a",
"display_name": "Python 3.8.5 64-bit ('.venv')"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
20 changes: 1 addition & 19 deletions flash_notebooks/tabular_classification.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -297,25 +297,7 @@
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
Loading

0 comments on commit f98318c

Please sign in to comment.