Skip to content
This repository has been archived by the owner on Oct 9, 2023. It is now read-only.

Commit

Permalink
[doc] Add DataPipeline + Callbacks + Registry (#207)
Browse files Browse the repository at this point in the history
* update doc

* update docs

* update

* update

* add registry doc

* revamp doc

* resolve issues

* update example

* resolve some bugs

* update on comments

* resolve flake8

* update registry

* update on comments

* updates

* add more descriptions, resolve typos

* update

* update docs

* update on comments

* update

* udpate

* Update flash/data/data_pipeline.py

* update

* update docs

* removed typing in example

* update

* update on comments

* update on comments

Co-authored-by: Kaushik B <[email protected]>
  • Loading branch information
tchaton and kaushikb11 authored Apr 13, 2021
1 parent a33b6b2 commit 6185bda
Show file tree
Hide file tree
Showing 27 changed files with 1,721 additions and 377 deletions.
1 change: 1 addition & 0 deletions .github/workflows/ci-testing.yml
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ jobs:
- name: Setup macOS
if: runner.os == 'macOS'
run: |
brew update
brew install libomp # https://github.com/pytorch/pytorch/issues/20030
- name: Set min. dependencies
Expand Down
225 changes: 186 additions & 39 deletions docs/source/custom_task.rst
Original file line number Diff line number Diff line change
@@ -1,29 +1,54 @@
Tutorial: Creating a Custom Task
================================

In this tutorial we will go over the process of creating a custom task,
along with a custom data module.
In this tutorial we will go over the process of creating a custom :class:`~flash.core.model.Task`,
along with a custom :class:`~flash.data.data_module.DataModule`.


The tutorial objective is to create a ``RegressionTask`` to learn to predict if someone has ``diabetes`` or not.
We will use ``scikit-learn`` `Diabetes dataset <https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset>`__.
which is stored as numpy arrays.

.. note::

Find the complete tutorial example at
`flash_examples/custom_task.py <https://github.com/PyTorchLightning/lightning-flash/blob/revamp_doc/flash_examples/custom_task.py>`_.


1. Imports
----------


.. testcode:: python

import flash
from typing import Any, List, Tuple

import numpy as np
import torch
from torch.utils.data import TensorDataset, DataLoader
from torch import nn
from pytorch_lightning import seed_everything
from sklearn import datasets
from sklearn.model_selection import train_test_split
from torch import nn

import flash
from flash.data.auto_dataset import AutoDataset
from flash.data.process import Postprocess, Preprocess

The Task: Linear regression
---------------------------
# set the random seeds.
seed_everything(42)


2. The Task: Linear regression
-------------------------------

Here we create a basic linear regression task by subclassing
``flash.Task``. For the majority of tasks, you will likely only need to
:class:`~flash.core.model.Task`. For the majority of tasks, you will likely only need to
override the ``__init__`` and ``forward`` methods.

.. testcode::

class LinearRegression(flash.Task):
class RegressionTask(flash.Task):

def __init__(self, num_inputs, learning_rate=0.001, metrics=None):
# what kind of model do we want?
model = nn.Linear(num_inputs, 1)
Expand All @@ -46,6 +71,15 @@ override the ``__init__`` and ``forward`` methods.
# we don't actually need to override this method for this example
return self.model(x)

.. note::

Lightning Flash provides registries.
Registries are Flash internal key-value database to store a mapping between a name and a function.
In simple words, they are just advanced dictionary storing a function from a key string.
They are useful to store list of backbones and make them available for a :class:`~flash.core.model.Task`.
Check out to learn more :ref:`registry`.


Where is the training step?
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Expand All @@ -56,36 +90,157 @@ override ``step`` (which is called for training, validation, and
testing) or override ``training_step``, ``validation_step``, and
``test_step`` individually. These methods behave identically to PyTorch
Lightning’s
`methods <https://pytorch-lightning.readthedocs.io/en/latest/lightning_module.html#methods>`__.
`methods <https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#methods>`__.

The Data
--------
Here is the pseudo code behind :class:`~flash.core.model.Task` step.

For a task you will likely need a specific way of loading data. For this
example, lets say we want a ``flash.DataModule`` to be used explicitly
for the prediction of diabetes disease progression. We can create this
``DataModule`` below, wrapping the scikit-learn `Diabetes
dataset <https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset>`__.
Example::

def step(self, batch: Any, batch_idx: int) -> Any:
"""
The training/validation/test step. Override for custom behavior.
"""
x, y = batch
y_hat = self(x)
# compute the logs, loss and metrics as an output dictionary
...
return output


3.a The DataModule API
----------------------

Now that we have defined our ``RegressionTask``, we need to load our data.
We will define a custom ``NumpyDataModule`` class subclassing :class:`~flash.data.data_module.DataModule`.
This ``NumpyDataModule`` class will provide a ``from_xy_dataset`` helper ``classmethod`` to instantiate
:class:`~flash.data.data_module.DataModule` from x, y numpy arrays.

Here is how it would look like:

Example::

x, y = ...
preprocess_cls = ...
datamodule = NumpyDataModule.from_xy_dataset(x, y, preprocess_cls)

Here is the ``NumpyDataModule`` implementation:

Example::

from flash import DataModule
from flash.data.process import Preprocess
import numpy as np

ND = np.ndarray

class NumpyDataModule(DataModule):

@classmethod
def from_xy_dataset(
cls,
x: ND,
y: ND,
preprocess_cls: Preprocess = NumpyPreprocess,
batch_size: int = 64,
num_workers: int = 0
):

You’ll notice we added a ``DataPipeline``, which will be used when we
call ``.predict()`` on our model. In this case we want to nicely format
our ouput from the model with the string ``"disease progression"``, but
you could do any sort of post processing you want (see :ref:`datapipeline`).
preprocess = preprocess_cls()

Fit
---
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=.20, random_state=0)

# Make sure to call ``from_load_data_inputs``.
# The ``train_load_data_input`` value will be given to ``Preprocess``
# ``train_load_data`` function.
dm = cls.from_load_data_inputs(
train_load_data_input=(x_train, y_train),
test_load_data_input=(x_test, y_test),
preprocess=preprocess, # DON'T FORGET TO PROVIDE THE PREPROCESS
batch_size=batch_size,
num_workers=num_workers
)
# Some metatada can be accessed from ``train_ds`` directly.
dm.num_inputs = dm.train_dataset.num_inputs
return dm


.. note::

The :class:`~flash.data.data_module.DataModule` provides a ``from_load_data_inputs`` helper function. This function will take care
of connecting the provided :class:`~flash.data.process.Preprocess` with the :class:`~flash.data.data_module.DataModule`.
Make sure to instantiate your :class:`~flash.data.data_module.DataModule` with this helper if you rely on :class:`~flash.data.process.Preprocess`
objects.

3.b The Preprocess API
----------------------

A :class:`~flash.data.process.Preprocess` object provides a series of hooks that can be overridden with custom data processing logic.
It allows the user much more granular control over their data processing flow.

.. note::

Why introducing :class:`~flash.data.process.Preprocess` ?

The :class:`~flash.data.process.Preprocess` object reduces the engineering overhead to make inference on raw data or
to deploy the model in production environnement compared to traditional
`Dataset <https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset>`_.

You can override ``predict_{hook_name}`` hooks to handle data processing logic specific for inference.

Example::

import torch
from torch import Tensor
import numpy as np

ND = np.ndarray

class NumpyPreprocess(Preprocess):

def load_data(self, data: Tuple[ND, ND], dataset: AutoDataset) -> List[Tuple[ND, float]]:
if self.training:
dataset.num_inputs = data[0].shape[1]
return [(x, y) for x, y in zip(*data)]

def to_tensor_transform(self, sample: Any) -> Tuple[Tensor, Tensor]:
x, y = sample
x = torch.from_numpy(x).float()
y = torch.tensor(y, dtype=torch.float)
return x, y

def predict_load_data(self, data: ND) -> ND:
return data

def predict_to_tensor_transform(self, sample: ND) -> ND:
return torch.from_numpy(sample).float()


You now have a new customized Flash Task! Congratulations !

You can fit, finetune, validate and predict directly with those objects.

4. Fitting
----------

For this task, here is how to fit the ``RegressionTask`` Task on ``scikit-learn`` `Diabetes
dataset <https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset>`__.

Like any Flash Task, we can fit our model using the ``flash.Trainer`` by
supplying the task itself, and the associated data:

.. code:: python
data = DiabetesData()
model = LinearRegression(num_inputs=data.num_inputs)
x, y = datasets.load_diabetes(return_X_y=True)
datamodule = NumpyDataModule.from_xy_dataset(x, y)
model = RegressionTask(num_inputs=datamodule.num_inputs)
trainer = flash.Trainer(max_epochs=1000)
trainer.fit(model, data)
trainer.fit(model, datamodule=datamodule)
5. Predicting
-------------

With a trained model we can now perform inference. Here we will use a
few examples from the test set of our data:
Expand All @@ -97,17 +252,9 @@ few examples from the test set of our data:
[-0.0128, -0.0446, 0.0606, 0.0529, 0.0480, 0.0294, -0.0176, 0.0343, 0.0702, 0.0072],
[ 0.0381, 0.0507, 0.0089, 0.0425, -0.0428, -0.0210, -0.0397, -0.0026, -0.0181, 0.0072],
[-0.0128, -0.0446, -0.0235, -0.0401, -0.0167, 0.0046, -0.0176, -0.0026, -0.0385, -0.0384],
[-0.0237, -0.0446, 0.0455, 0.0907, -0.0181, -0.0354, 0.0707, -0.0395, -0.0345, -0.0094]])
model.predict(predict_data)
Because of our custom data pipeline’s ``after_uncollate`` method, we
will get a nicely formatted output like the following:

.. code::
[-0.0237, -0.0446, 0.0455, 0.0907, -0.0181, -0.0354, 0.0707, -0.0395, -0.0345, -0.0094]]
)
['disease progression: 155.90',
'disease progression: 156.59',
'disease progression: 152.69',
'disease progression: 149.05',
'disease progression: 150.90']
predictions = model.predict(predict_data)
print(predictions)
#out: [tensor([14.7190]), tensor([14.7100]), tensor([14.7288]), tensor([14.6685]), tensor([14.6687])]
53 changes: 53 additions & 0 deletions docs/source/general/callback.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
########
Callback
########

.. _callback:

**************
Flash Callback
**************

:class:`~flash.data.callback.FlashCallback` is an extension of the PyTorch Lightning `Callback <https://pytorch-lightning.readthedocs.io/en/latest/extensions/callbacks.html>`__.

A callback is a self-contained program that can be reused across projects.

Flash and Lightning have a callback system to execute callbacks when needed.

Callbacks should capture any NON-ESSENTIAL logic that is NOT required for your lightning module to run.

Same as PyTorch Lightning, Callbacks can be provided directly to the Trainer.

Example::

trainer = Trainer(callbacks=[MyCustomCallback()])


*******************
Available Callbacks
*******************


BaseDataFetcher
_______________

.. autoclass:: flash.data.callback.BaseDataFetcher
:members: enable

BaseVisualization
_________________

.. autoclass:: flash.data.base_viz.BaseVisualization
:members:


*************
API reference
*************


FlashCallback
_____________

.. autoclass:: flash.data.callback.FlashCallback
:members:
Loading

0 comments on commit 6185bda

Please sign in to comment.