Skip to content
This repository has been archived by the owner on Oct 9, 2023. It is now read-only.

Commit

Permalink
Update on comments
Browse files Browse the repository at this point in the history
  • Loading branch information
ethanwharris committed Oct 29, 2021
1 parent 9c213d6 commit 3cbd13e
Show file tree
Hide file tree
Showing 4 changed files with 1 addition and 3 deletions.
1 change: 1 addition & 0 deletions flash/core/integrations/pytorch_forecasting/adapter.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,7 @@ def from_task(
**backbone_kwargs,
) -> Adapter:
parameters = copy(parameters)
# Remove the single row of data from the parameters to reconstruct the `time_series_dataset`
data = parameters.pop("data_sample")
time_series_dataset = PatchTimeSeriesDataSet.from_parameters(parameters, data)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,6 @@
# Example based on this tutorial: https://pytorch-forecasting.readthedocs.io/en/latest/tutorials/ar.html
# 1. Create the DataModule
data = generate_ar_data(seasonality=10.0, timesteps=400, n_series=100, seed=42)
data["static"] = 2
data["date"] = pd.Timestamp("2020-01-01") + pd.to_timedelta(data.time_idx, "D")

max_prediction_length = 20
Expand Down
1 change: 0 additions & 1 deletion flash_examples/tabular_forecasting.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,6 @@
# Example based on this tutorial: https://pytorch-forecasting.readthedocs.io/en/latest/tutorials/ar.html
# 1. Create the DataModule
data = generate_ar_data(seasonality=10.0, timesteps=400, n_series=100, seed=42)
data["static"] = 2
data["date"] = pd.Timestamp("2020-01-01") + pd.to_timedelta(data.time_idx, "D")

max_prediction_length = 20
Expand Down
1 change: 0 additions & 1 deletion tests/tabular/forecasting/test_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@
@pytest.fixture
def sample_data():
data = generate_ar_data(seasonality=10.0, timesteps=100, n_series=2, seed=42)
data["static"] = 2
data["date"] = pd.Timestamp("2020-01-01") + pd.to_timedelta(data.time_idx, "D")
max_prediction_length = 20
training_cutoff = data["time_idx"].max() - max_prediction_length
Expand Down

0 comments on commit 3cbd13e

Please sign in to comment.