Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix segmentation Dice + GeneralizedDice for 2d index tensors #2832

Merged
merged 4 commits into from
Nov 12, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,9 +51,10 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Removed `num_outputs` in `R2Score` ([#2800](https://github.com/Lightning-AI/torchmetrics/pull/2800))



### Fixed

-
- Fixed segmentation `Dice` + `GeneralizedDice` for 2d index tensors ([#2832](https://github.com/Lightning-AI/torchmetrics/pull/2832))


---
Expand Down
5 changes: 3 additions & 2 deletions src/torchmetrics/functional/segmentation/dice.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,13 +49,14 @@ def _dice_score_update(
) -> tuple[Tensor, Tensor, Tensor]:
"""Update the state with the current prediction and target."""
_check_same_shape(preds, target)
if preds.ndim < 3:
raise ValueError(f"Expected both `preds` and `target` to have at least 3 dimensions, but got {preds.ndim}.")

if input_format == "index":
preds = torch.nn.functional.one_hot(preds, num_classes=num_classes).movedim(-1, 1)
target = torch.nn.functional.one_hot(target, num_classes=num_classes).movedim(-1, 1)

if preds.ndim < 3:
raise ValueError(f"Expected both `preds` and `target` to have at least 3 dimensions, but got {preds.ndim}.")

if not include_background:
preds, target = _ignore_background(preds, target)

Expand Down
12 changes: 7 additions & 5 deletions src/torchmetrics/functional/segmentation/generalized_dice.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple

import torch
from torch import Tensor
from typing_extensions import Literal
Expand Down Expand Up @@ -49,16 +51,17 @@ def _generalized_dice_update(
include_background: bool,
weight_type: Literal["square", "simple", "linear"] = "square",
input_format: Literal["one-hot", "index"] = "one-hot",
) -> Tensor:
) -> Tuple[Tensor, Tensor]:
"""Update the state with the current prediction and target."""
_check_same_shape(preds, target)
if preds.ndim < 3:
raise ValueError(f"Expected both `preds` and `target` to have at least 3 dimensions, but got {preds.ndim}.")

if input_format == "index":
preds = torch.nn.functional.one_hot(preds, num_classes=num_classes).movedim(-1, 1)
target = torch.nn.functional.one_hot(target, num_classes=num_classes).movedim(-1, 1)

if preds.ndim < 3:
raise ValueError(f"Expected both `preds` and `target` to have at least 3 dimensions, but got {preds.ndim}.")

if not include_background:
preds, target = _ignore_background(preds, target)

Expand All @@ -67,7 +70,6 @@ def _generalized_dice_update(
target_sum = torch.sum(target, dim=reduce_axis)
pred_sum = torch.sum(preds, dim=reduce_axis)
cardinality = target_sum + pred_sum

if weight_type == "simple":
weights = 1.0 / target_sum
elif weight_type == "linear":
Expand All @@ -89,7 +91,7 @@ def _generalized_dice_update(

numerator = 2.0 * intersection * weights
denominator = cardinality * weights
return numerator, denominator # type:ignore[return-value]
return numerator, denominator


def _generalized_dice_compute(numerator: Tensor, denominator: Tensor, per_class: bool = True) -> Tensor:
Expand Down
4 changes: 4 additions & 0 deletions tests/unittests/segmentation/inputs.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,3 +34,7 @@
preds=torch.randint(0, NUM_CLASSES, (NUM_BATCHES, BATCH_SIZE, 32, 32)),
target=torch.randint(0, NUM_CLASSES, (NUM_BATCHES, BATCH_SIZE, 32, 32)),
)
_input4 = _Input(
preds=torch.randint(0, NUM_CLASSES, (NUM_BATCHES, BATCH_SIZE, 32)),
target=torch.randint(0, NUM_CLASSES, (NUM_BATCHES, BATCH_SIZE, 32)),
)
3 changes: 2 additions & 1 deletion tests/unittests/segmentation/test_dice.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
from unittests import NUM_CLASSES
from unittests._helpers import seed_all
from unittests._helpers.testers import MetricTester
from unittests.segmentation.inputs import _inputs1, _inputs2, _inputs3
from unittests.segmentation.inputs import _input4, _inputs1, _inputs2, _inputs3

seed_all(42)

Expand Down Expand Up @@ -55,6 +55,7 @@ def _reference_dice_score(
(_inputs1.preds, _inputs1.target, "one-hot"),
(_inputs2.preds, _inputs2.target, "one-hot"),
(_inputs3.preds, _inputs3.target, "index"),
(_input4.preds, _input4.target, "index"),
],
)
@pytest.mark.parametrize("include_background", [True, False])
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@
from unittests import NUM_CLASSES
from unittests._helpers import seed_all
from unittests._helpers.testers import MetricTester
from unittests.segmentation.inputs import _inputs1, _inputs2, _inputs3
from unittests.segmentation.inputs import _input4, _inputs1, _inputs2, _inputs3

seed_all(42)

Expand Down Expand Up @@ -53,6 +53,7 @@ def _reference_generalized_dice(
(_inputs1.preds, _inputs1.target, "one-hot"),
(_inputs2.preds, _inputs2.target, "one-hot"),
(_inputs3.preds, _inputs3.target, "index"),
(_input4.preds, _input4.target, "index"),
],
)
@pytest.mark.parametrize("include_background", [True, False])
Expand Down
Loading