Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix bug in MeanAveragePrecision.coco_to_tm #2588

Merged
merged 4 commits into from
Jun 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 20 additions & 6 deletions src/torchmetrics/detection/mean_ap.py
Original file line number Diff line number Diff line change
Expand Up @@ -665,7 +665,7 @@ def coco_to_tm(
>>> # https://github.com/cocodataset/cocoapi/tree/master/results
>>> from torchmetrics.detection import MeanAveragePrecision
>>> preds, target = MeanAveragePrecision.coco_to_tm(
... "instances_val2014_fakebbox100_results.json.json",
... "instances_val2014_fakebbox100_results.json",
... "val2014_fake_eval_res.txt.json"
... iou_type="bbox"
... ) # doctest: +SKIP
Expand Down Expand Up @@ -775,21 +775,35 @@ def tm_to_coco(self, name: str = "tm_map_input") -> None:
... labels=tensor([0]),
... )
... ]
>>> metric = MeanAveragePrecision()
>>> metric = MeanAveragePrecision(iou_type="bbox")
>>> metric.update(preds, target)
>>> metric.tm_to_coco("tm_map_input") # doctest: +SKIP
>>> metric.tm_to_coco("tm_map_input")
"""
target_dataset = self._get_coco_format(
labels=self.groundtruth_labels,
boxes=self.groundtruth_box,
masks=self.groundtruth_mask,
boxes=self.groundtruth_box if len(self.groundtruth_box) > 0 else None,
masks=self.groundtruth_mask if len(self.groundtruth_mask) > 0 else None,
crowds=self.groundtruth_crowds,
area=self.groundtruth_area,
)
preds_dataset = self._get_coco_format(
labels=self.detection_labels, boxes=self.detection_box, masks=self.detection_mask
labels=self.detection_labels,
boxes=self.detection_box if len(self.detection_box) > 0 else None,
masks=self.detection_mask if len(self.detection_mask) > 0 else None,
scores=self.detection_scores,
)
if "segm" in self.iou_type:
# the rle masks needs to be decoded to be written to a file
preds_dataset["annotations"] = apply_to_collection(
preds_dataset["annotations"], dtype=bytes, function=lambda x: x.decode("utf-8")
)
preds_dataset["annotations"] = apply_to_collection(
preds_dataset["annotations"],
dtype=np.uint32,
function=lambda x: int(x),
)
target_dataset = apply_to_collection(target_dataset, dtype=bytes, function=lambda x: x.decode("utf-8"))

preds_json = json.dumps(preds_dataset["annotations"], indent=4)
target_json = json.dumps(target_dataset, indent=4)
Expand Down
52 changes: 52 additions & 0 deletions tests/unittests/detection/test_map.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,58 @@ def _generate_coco_inputs(iou_type):
_coco_segm_input = _generate_coco_inputs("segm")


@pytest.mark.skipif(_pytest_condition, reason="test requires that torchvision=>0.8.0 and pycocotools is installed")
@pytest.mark.parametrize("iou_type", ["bbox", "segm"])
@pytest.mark.parametrize("backend", ["pycocotools", "faster_coco_eval"])
def test_tm_to_coco(tmpdir, iou_type, backend):
"""Test that the conversion from TM to COCO format works."""
preds, target = _coco_bbox_input if iou_type == "bbox" else _coco_segm_input
metric = MeanAveragePrecision(iou_type=iou_type, backend=backend, box_format="xywh")
for bp, bt in zip(preds, target):
metric.update(bp, bt)
metric.tm_to_coco(f"{tmpdir}/tm_map_input")
preds_2, target_2 = MeanAveragePrecision.coco_to_tm(
f"{tmpdir}/tm_map_input_preds.json",
f"{tmpdir}/tm_map_input_target.json",
iou_type=iou_type,
backend=backend,
)

preds = [p for batch in preds for p in batch]
target = [t for batch in target for t in batch]

# make sure that every prediction/target is found in the new prediction/target after saving and loading
for sample1 in preds:
sample_found = False
for sample2 in preds_2:
if iou_type == "segm":
if sample1["masks"].shape == sample2["masks"].shape and torch.allclose(
sample1["masks"], sample2["masks"]
):
sample_found = True
else:
if sample1["boxes"].shape == sample2["boxes"].shape and torch.allclose(
sample1["boxes"], sample2["boxes"]
):
sample_found = True
assert sample_found, "preds not found"

for sample1 in target:
sample_found = False
for sample2 in target_2:
if iou_type == "segm":
if sample1["masks"].shape == sample2["masks"].shape and torch.allclose(
sample1["masks"], sample2["masks"]
):
sample_found = True
else:
if sample1["boxes"].shape == sample2["boxes"].shape and torch.allclose(
sample1["boxes"], sample2["boxes"]
):
sample_found = True
assert sample_found, "target not found"


def _compare_against_coco_fn(preds, target, iou_type, iou_thresholds=None, rec_thresholds=None, class_metrics=True):
"""Taken from https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb."""
with contextlib.redirect_stdout(io.StringIO()):
Expand Down
Loading