Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add new metric "quality with no reference" #2288

Merged
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
7efc9b2
added `qnr` metric
ywchan2005 Dec 31, 2023
3d1607d
appended change log
ywchan2005 Dec 31, 2023
c01459e
Update src/torchmetrics/image/qnr.py
ywchan2005 Jan 4, 2024
0b2a116
Merge branch 'master' into quality-with-no-reference-metric
Borda Jan 9, 2024
f9288c6
Merge branch 'master' into quality-with-no-reference-metric
Borda Jan 10, 2024
e65f4a6
marked `pan_lr` as optional
ywchan2005 Jan 21, 2024
f3c1a13
added details on what happens when `pan_lr` is `None`
ywchan2005 Jan 21, 2024
591957c
Merge branch 'master' into quality-with-no-reference-metric
ywchan2005 Jan 21, 2024
ea55b3b
Merge branch 'master' into quality-with-no-reference-metric
SkafteNicki Jan 29, 2024
9d5cb00
Update src/torchmetrics/functional/image/qnr.py
SkafteNicki Jan 29, 2024
eb4835a
fix ddp testing after refactor
SkafteNicki Jan 29, 2024
f61ccee
Merge branch 'master' into quality-with-no-reference-metric
mergify[bot] Jan 29, 2024
45e00cf
Merge branch 'master' into quality-with-no-reference-metric
mergify[bot] Jan 30, 2024
39a9ba2
check if pytest.pool is enabled
ywchan2005 Feb 2, 2024
fe881e9
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Feb 2, 2024
38a8d9e
Merge branch 'master' into quality-with-no-reference-metric
ywchan2005 Feb 2, 2024
c372dcd
Merge branch 'master' into quality-with-no-reference-metric
mergify[bot] Feb 6, 2024
d529937
Merge branch 'master' into quality-with-no-reference-metric
mergify[bot] Feb 6, 2024
b9fe024
Merge branch 'master' into quality-with-no-reference-metric
mergify[bot] Feb 6, 2024
7a7be6a
Merge branch 'master' into quality-with-no-reference-metric
mergify[bot] Feb 6, 2024
fba864d
Merge branch 'master' into quality-with-no-reference-metric
mergify[bot] Feb 6, 2024
2db4d75
Merge branch 'master' into quality-with-no-reference-metric
mergify[bot] Feb 6, 2024
9e1b9b3
Merge branch 'master' into quality-with-no-reference-metric
Borda Feb 6, 2024
9b0d153
Merge branch 'master' into quality-with-no-reference-metric
mergify[bot] Feb 6, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,9 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Added `RetrievalAUROC` metric ([#2251](https://github.com/Lightning-AI/torchmetrics/pull/2251))


- Added `QualityWithNoReference` metric ([#2288](https://github.com/Lightning-AI/torchmetrics/pull/2288))


### Changed

- Changed minimum supported Pytorch version from 1.8 to 1.10 ([#2145](https://github.com/Lightning-AI/torchmetrics/pull/2145))
Expand Down
21 changes: 21 additions & 0 deletions docs/source/image/quality_with_no_reference.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
.. customcarditem::
:header: Quality with No Reference
:image: https://pl-flash-data.s3.amazonaws.com/assets/thumbnails/image_classification.svg
:tags: Image

.. include:: ../links.rst

#########################
Quality with No Reference
#########################

Module Interface
________________

.. autoclass:: torchmetrics.image.QualityWithNoReference
:exclude-members: update, compute

Functional Interface
____________________

.. autofunction:: torchmetrics.functional.image.quality_with_no_reference
1 change: 1 addition & 0 deletions docs/source/links.rst
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,7 @@
.. _UniversalImageQualityIndex: https://ieeexplore.ieee.org/abstract/document/995823
.. _SpectralDistortionIndex: https://www.semanticscholar.org/paper/Multispectral-and-panchromatic-data-fusion-without-Alparone-Aiazzi/b6db12e3785326577cb95fd743fecbf5bc66c7c9
.. _SpatialDistortionIndex: https://www.semanticscholar.org/paper/Multispectral-and-panchromatic-data-fusion-without-Alparone-Aiazzi/b6db12e3785326577cb95fd743fecbf5bc66c7c9
.. _QualityWithNoReference: https://www.semanticscholar.org/paper/Multispectral-and-panchromatic-data-fusion-without-Alparone-Aiazzi/b6db12e3785326577cb95fd743fecbf5bc66c7c9
.. _RelativeAverageSpectralError: https://www.semanticscholar.org/paper/Data-Fusion.-Definitions-and-Architectures-Fusion-Wald/51b2b81e5124b3bb7ec53517a5dd64d8e348cadf
.. _WMAPE: https://en.wikipedia.org/wiki/WMAPE
.. _CER: https://rechtsprechung-im-ostseeraum.archiv.uni-greifswald.de/word-error-rate-character-error-rate-how-to-evaluate-a-model
Expand Down
2 changes: 2 additions & 0 deletions src/torchmetrics/functional/image/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
from torchmetrics.functional.image.perceptual_path_length import perceptual_path_length
from torchmetrics.functional.image.psnr import peak_signal_noise_ratio
from torchmetrics.functional.image.psnrb import peak_signal_noise_ratio_with_blocked_effect
from torchmetrics.functional.image.qnr import quality_with_no_reference
from torchmetrics.functional.image.rase import relative_average_spectral_error
from torchmetrics.functional.image.rmse_sw import root_mean_squared_error_using_sliding_window
from torchmetrics.functional.image.sam import spectral_angle_mapper
Expand Down Expand Up @@ -51,4 +52,5 @@
"perceptual_path_length",
"critical_success_index",
"spatial_correlation_coefficient",
"quality_with_no_reference",
]
82 changes: 82 additions & 0 deletions src/torchmetrics/functional/image/qnr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

from torch import Tensor
from typing_extensions import Literal

from torchmetrics.functional.image.d_lambda import spectral_distortion_index
from torchmetrics.functional.image.d_s import spatial_distortion_index
from torchmetrics.utilities.imports import _TORCHVISION_AVAILABLE

if not _TORCHVISION_AVAILABLE:
__doctest_skip__ = ["_quality_with_no_reference_compute", "quality_with_no_reference"]
SkafteNicki marked this conversation as resolved.
Show resolved Hide resolved


def quality_with_no_reference(
preds: Tensor,
ms: Tensor,
pan: Tensor,
pan_lr: Optional[Tensor] = None,
alpha: float = 1,
beta: float = 1,
norm_order: int = 1,
window_size: int = 7,
reduction: Literal["elementwise_mean", "sum", "none"] = "elementwise_mean",
) -> Tensor:
"""Calculate `Quality with No Reference`_ (QualityWithNoReference_) also known as QNR.

Metric is used to compare the joint spectral and spatial distortion between two images.

Args:
preds: High resolution multispectral image.
ms: Low resolution multispectral image.
pan: High resolution panchromatic image.
pan_lr: Low resolution panchromatic image.
ywchan2005 marked this conversation as resolved.
Show resolved Hide resolved
alpha: Relevance of spectral distortion.
beta: Relevance of spatial distortion.
norm_order: Order of the norm applied on the difference.
window_size: Window size of the filter applied to degrade the high resolution panchromatic image.
reduction: A method to reduce metric score over labels.

- ``'elementwise_mean'``: takes the mean (default)
- ``'sum'``: takes the sum
- ``'none'``: no reduction will be applied

Return:
Tensor with QualityWithNoReference score

Raises:
ValueError:
If ``alpha`` or ``beta`` is not a non-negative real number.

Example:
>>> import torch
>>> from torchmetrics.functional.image import quality_with_no_reference
>>> _ = torch.manual_seed(42)
>>> preds = torch.rand([16, 3, 32, 32])
>>> ms = torch.rand([16, 3, 16, 16])
>>> pan = torch.rand([16, 3, 32, 32])
>>> quality_with_no_reference(preds, ms, pan)
tensor(0.9694)

"""
if not isinstance(alpha, (int, float)) or alpha < 0:
raise ValueError(f"Expected `alpha` to be a non-negative real number. Got alpha: {alpha}.")
if not isinstance(beta, (int, float)) or beta < 0:
raise ValueError(f"Expected `beta` to be a non-negative real number. Got beta: {beta}.")
d_lambda = spectral_distortion_index(preds, ms, norm_order, reduction)
d_s = spatial_distortion_index(preds, ms, pan, pan_lr, norm_order, window_size, reduction)
return (1 - d_lambda) ** alpha * (1 - d_s) ** beta
2 changes: 2 additions & 0 deletions src/torchmetrics/image/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
from torchmetrics.image.mifid import MemorizationInformedFrechetInceptionDistance
from torchmetrics.image.psnr import PeakSignalNoiseRatio
from torchmetrics.image.psnrb import PeakSignalNoiseRatioWithBlockedEffect
from torchmetrics.image.qnr import QualityWithNoReference
from torchmetrics.image.rase import RelativeAverageSpectralError
from torchmetrics.image.rmse_sw import RootMeanSquaredErrorUsingSlidingWindow
from torchmetrics.image.sam import SpectralAngleMapper
Expand Down Expand Up @@ -48,6 +49,7 @@
"TotalVariation",
"CriticalSuccessIndex",
"SpatialCorrelationCoefficient",
"QualityWithNoReference",
]

if _TORCH_FIDELITY_AVAILABLE:
Expand Down
226 changes: 226 additions & 0 deletions src/torchmetrics/image/qnr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict, List, Optional, Sequence, Union

from torch import Tensor
from typing_extensions import Literal

from torchmetrics.functional.image.d_lambda import _spectral_distortion_index_compute, _spectral_distortion_index_update
from torchmetrics.functional.image.d_s import _spatial_distortion_index_compute, _spatial_distortion_index_update
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TORCHVISION_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["QualityWithNoReference.plot"]

if not _TORCHVISION_AVAILABLE:
__doctest_skip__ = ["QualityWithNoReference", "QualityWithNoReference.plot"]


class QualityWithNoReference(Metric):
"""Compute Quality with No Reference (QualityWithNoReference_) also now as QNR.

The metric is used to compare the joint spectral and spatial distortion between two images.

As input to ``forward`` and ``update`` the metric accepts the following input

- ``preds`` (:class:`~torch.Tensor`): High resolution multispectral image of shape ``(N,C,H,W)``.
- ``target`` (:class:`~Dict`): A dictionary containing the following keys:
ywchan2005 marked this conversation as resolved.
Show resolved Hide resolved
- ``ms`` (:class:`~torch.Tensor`): Low resolution multispectral image of shape ``(N,C,H',W')``.
- ``pan`` (:class:`~torch.Tensor`): High resolution panchromatic image of shape ``(N,C,H,W)``.
- ``pan_lr`` (:class:`~torch.Tensor`): Low resolution panchromatic image of shape ``(N,C,H',W')``.
ywchan2005 marked this conversation as resolved.
Show resolved Hide resolved

where H and W must be multiple of H' and W'.

As output of `forward` and `compute` the metric returns the following output

- ``qnr`` (:class:`~torch.Tensor`): if ``reduction!='none'`` returns float scalar tensor with average QNR value
over sample else returns tensor of shape ``(N,)`` with QNR values per sample

Args:
alpha: Relevance of spectral distortion.
beta: Relevance of spatial distortion.
norm_order: Order of the norm applied on the difference.
window_size: Window size of the filter applied to degrade the high resolution panchromatic image.
reduction: a method to reduce metric score over labels.

- ``'elementwise_mean'``: takes the mean (default)
- ``'sum'``: takes the sum
- ``'none'``: no reduction will be applied

kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

Example:
>>> import torch
>>> _ = torch.manual_seed(42)
>>> from torchmetrics.image import QualityWithNoReference
>>> preds = torch.rand([16, 3, 32, 32])
>>> target = {
... 'ms': torch.rand([16, 3, 16, 16]),
... 'pan': torch.rand([16, 3, 32, 32]),
... }
>>> qnr = QualityWithNoReference()
>>> qnr(preds, target)
tensor(0.9694)

"""

higher_is_better: bool = True
is_differentiable: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0

preds: List[Tensor]
ms: List[Tensor]
pan: List[Tensor]
pan_lr: List[Tensor]

def __init__(
self,
alpha: float = 1,
beta: float = 1,
norm_order: int = 1,
window_size: int = 7,
reduction: Literal["elementwise_mean", "sum", "none"] = "elementwise_mean",
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
rank_zero_warn(
"Metric `QualityWithNoReference` will save all targets and"
" predictions in buffer. For large datasets this may lead"
" to large memory footprint."
ywchan2005 marked this conversation as resolved.
Show resolved Hide resolved
)

if not isinstance(alpha, (int, float)) or alpha < 0:
raise ValueError(f"Expected `alpha` to be a non-negative real number. Got alpha: {alpha}.")
self.alpha = alpha
if not isinstance(beta, (int, float)) or beta < 0:
raise ValueError(f"Expected `beta` to be a non-negative real number. Got beta: {beta}.")
self.beta = beta
if not isinstance(norm_order, int) or norm_order <= 0:
raise ValueError(f"Expected `norm_order` to be a positive integer. Got norm_order: {norm_order}.")
self.norm_order = norm_order
if not isinstance(window_size, int) or window_size <= 0:
raise ValueError(f"Expected `window_size` to be a positive integer. Got window_size: {window_size}.")
self.window_size = window_size
allowed_reductions = ("elementwise_mean", "sum", "none")
if reduction not in allowed_reductions:
raise ValueError(f"Expected argument `reduction` be one of {allowed_reductions} but got {reduction}")
self.reduction = reduction
self.add_state("preds", default=[], dist_reduce_fx="cat")
self.add_state("ms", default=[], dist_reduce_fx="cat")
self.add_state("pan", default=[], dist_reduce_fx="cat")
self.add_state("pan_lr", default=[], dist_reduce_fx="cat")

def update(self, preds: Tensor, target: Dict[str, Tensor]) -> None:
"""Update state with preds and target.

Args:
preds: High resolution multispectral image.
target: A dictionary containing the following keys:
ywchan2005 marked this conversation as resolved.
Show resolved Hide resolved

- ``'ms'``: low resolution multispectral image.
- ``'pan'``: high resolution panchromatic image.
- ``'pan_lr'``: (optional) low resolution panchromatic image.

Raises:
ValueError:
If ``target`` doesn't have ``ms`` and ``pan``.

"""
if "ms" not in target:
raise ValueError(f"Expected `target` to have key `ms`. Got target: {target.keys()}.")
if "pan" not in target:
raise ValueError(f"Expected `target` to have key `pan`. Got target: {target.keys()}.")
ms = target["ms"]
pan = target["pan"]
pan_lr = target["pan_lr"] if "pan_lr" in target else None
preds, ms = _spectral_distortion_index_update(preds, ms)
preds, ms, pan, pan_lr = _spatial_distortion_index_update(preds, ms, pan, pan_lr)
self.preds.append(preds)
self.ms.append(target["ms"])
self.pan.append(target["pan"])
if "pan_lr" in target:
self.pan_lr.append(target["pan_lr"])

def compute(self) -> Tensor:
"""Compute and returns quality with no reference."""
preds = dim_zero_cat(self.preds)
ms = dim_zero_cat(self.ms)
pan = dim_zero_cat(self.pan)
pan_lr = dim_zero_cat(self.pan_lr) if len(self.pan_lr) > 0 else None
d_lambda = _spectral_distortion_index_compute(preds, ms, self.norm_order, self.reduction)
d_s = _spatial_distortion_index_compute(
preds, ms, pan, pan_lr, self.norm_order, self.window_size, self.reduction
)
return (1 - d_lambda) ** self.alpha * (1 - d_s) ** self.beta

def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.

Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis

Returns:
Figure and Axes object

Raises:
ModuleNotFoundError:
If `matplotlib` is not installed

.. plot::
:scale: 75

>>> # Example plotting a single value
>>> import torch
>>> _ = torch.manual_seed(42)
>>> from torchmetrics.image import QualityWithNoReference
>>> preds = torch.rand([16, 3, 32, 32])
>>> target = {
... 'ms': torch.rand([16, 3, 16, 16]),
... 'pan': torch.rand([16, 3, 32, 32]),
... }
>>> metric = QualityWithNoReference()
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()

.. plot::
:scale: 75

>>> # Example plotting multiple values
>>> import torch
>>> _ = torch.manual_seed(42)
>>> from torchmetrics.image import QualityWithNoReference
>>> preds = torch.rand([16, 3, 32, 32])
>>> target = {
... 'ms': torch.rand([16, 3, 16, 16]),
... 'pan': torch.rand([16, 3, 32, 32]),
... }
>>> metric = QualityWithNoReference()
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)

"""
return self._plot(val, ax)
Loading
Loading