Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add plotting 13/n #1624

Merged
merged 10 commits into from
Mar 17, 2023
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
[#1610](https://github.com/Lightning-AI/metrics/pull/1610),
[#1609](https://github.com/Lightning-AI/metrics/pull/1609),
[#1621](https://github.com/Lightning-AI/metrics/pull/1621),
[#1624](https://github.com/Lightning-AI/metrics/pull/1624),
)


Expand Down
7 changes: 1 addition & 6 deletions src/torchmetrics/classification/accuracy.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
from torch import Tensor
from typing_extensions import Literal

from torchmetrics.classification.stat_scores import BinaryStatScores, MulticlassStatScores, MultilabelStatScores
from torchmetrics.functional.classification.accuracy import _accuracy_reduce
from torchmetrics.metric import Metric
from torchmetrics.utilities.enums import ClassificationTask
Expand All @@ -25,12 +26,6 @@
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["BinaryAccuracy.plot", "MulticlassAccuracy.plot", "MultilabelAccuracy.plot"]

from torchmetrics.classification.stat_scores import ( # isort:skip
BinaryStatScores,
MulticlassStatScores,
MultilabelStatScores,
)


class BinaryAccuracy(BinaryStatScores):
r"""Compute `Accuracy`_ for binary tasks.
Expand Down
134 changes: 133 additions & 1 deletion src/torchmetrics/classification/matthews_corrcoef.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional
from typing import Any, Optional, Sequence, Union

from torch import Tensor
from typing_extensions import Literal
Expand All @@ -20,6 +20,15 @@
from torchmetrics.functional.classification.matthews_corrcoef import _matthews_corrcoef_reduce
from torchmetrics.metric import Metric
from torchmetrics.utilities.enums import ClassificationTask
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = [
"BinaryMatthewsCorrCoef.plot",
"MulticlassMatthewsCorrCoef.plot",
"MultilabelMatthewsCorrCoef.plot",
]


class BinaryMatthewsCorrCoef(BinaryConfusionMatrix):
Expand Down Expand Up @@ -84,6 +93,47 @@ def compute(self) -> Tensor:
"""Compute metric."""
return _matthews_corrcoef_reduce(self.confmat)

def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.

Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis

Returns:
Figure object and Axes object

Raises:
ModuleNotFoundError:
If `matplotlib` is not installed

.. plot::
:scale: 75

>>> from torch import rand, randint
>>> # Example plotting a single value
>>> from torchmetrics.classification import BinaryMatthewsCorrCoef
>>> metric = BinaryMatthewsCorrCoef()
>>> metric.update(rand(10), randint(2,(10,)))
>>> fig_, ax_ = metric.plot()

.. plot::
:scale: 75

>>> from torch import rand, randint
>>> # Example plotting multiple values
>>> from torchmetrics.classification import BinaryMatthewsCorrCoef
>>> metric = BinaryMatthewsCorrCoef()
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(rand(10), randint(2,(10,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)


class MulticlassMatthewsCorrCoef(MulticlassConfusionMatrix):
r"""Calculate `Matthews correlation coefficient`_ for multiclass tasks.
Expand Down Expand Up @@ -150,6 +200,47 @@ def compute(self) -> Tensor:
"""Compute metric."""
return _matthews_corrcoef_reduce(self.confmat)

def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.

Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis

Returns:
Figure object and Axes object

Raises:
ModuleNotFoundError:
If `matplotlib` is not installed

.. plot::
:scale: 75

>>> from torch import randint
>>> # Example plotting a single value per class
>>> from torchmetrics.classification import MulticlassMatthewsCorrCoef
>>> metric = MulticlassMatthewsCorrCoef(num_classes=3)
>>> metric.update(randint(3, (20,)), randint(3, (20,)))
>>> fig_, ax_ = metric.plot()

.. plot::
:scale: 75

>>> from torch import randint
>>> # Example plotting a multiple values per class
>>> from torchmetrics.classification import MulticlassMatthewsCorrCoef
>>> metric = MulticlassMatthewsCorrCoef(num_classes=3)
>>> values = []
>>> for _ in range(20):
... values.append(metric(randint(3, (20,)), randint(3, (20,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)


class MultilabelMatthewsCorrCoef(MultilabelConfusionMatrix):
r"""Calculate `Matthews correlation coefficient`_ for multilabel tasks.
Expand Down Expand Up @@ -215,6 +306,47 @@ def compute(self) -> Tensor:
"""Compute metric."""
return _matthews_corrcoef_reduce(self.confmat)

def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.

Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis

Returns:
Figure object and Axes object

Raises:
ModuleNotFoundError:
If `matplotlib` is not installed

.. plot::
:scale: 75

>>> from torch import rand, randint
>>> # Example plotting a single value
>>> from torchmetrics.classification import MultilabelMatthewsCorrCoef
>>> metric = MultilabelMatthewsCorrCoef(num_labels=3)
>>> metric.update(randint(2, (20, 3)), randint(2, (20, 3)))
>>> fig_, ax_ = metric.plot()

.. plot::
:scale: 75

>>> from torch import rand, randint
>>> # Example plotting multiple values
>>> from torchmetrics.classification import MultilabelMatthewsCorrCoef
>>> metric = MultilabelMatthewsCorrCoef(num_labels=3)
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(randint(2, (20, 3)), randint(2, (20, 3))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)


class MatthewsCorrCoef:
r"""Calculate `Matthews correlation coefficient`_ .
Expand Down
Loading