Skip to content

Commit

Permalink
Fix naming of statistics in MeanAveragePrecision with custom max de…
Browse files Browse the repository at this point in the history
…t thresholds (#2367)

* fix src code + fix docs
* fix tests

(cherry picked from commit 9253717)
  • Loading branch information
SkafteNicki authored and Borda committed Feb 12, 2024
1 parent f9f1842 commit 38d6375
Show file tree
Hide file tree
Showing 3 changed files with 33 additions and 42 deletions.
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,9 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Fixed cached network in `FeatureShare` not being moved to the correct device ([#2348](https://github.com/Lightning-AI/torchmetrics/pull/2348))


- Fix naming of statistics in `MeanAveragePrecision` with custom max det thresholds ([#2367](https://github.com/Lightning-AI/torchmetrics/pull/2367))


- Fixed custom aggregation in retrieval metrics ([#2364](https://github.com/Lightning-AI/torchmetrics/pull/2364))


Expand Down
42 changes: 22 additions & 20 deletions src/torchmetrics/detection/mean_ap.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,9 +128,12 @@ class MeanAveragePrecision(Metric):
- map_small: (:class:`~torch.Tensor`), mean average precision for small objects
- map_medium:(:class:`~torch.Tensor`), mean average precision for medium objects
- map_large: (:class:`~torch.Tensor`), mean average precision for large objects
- mar_1: (:class:`~torch.Tensor`), mean average recall for 1 detection per image
- mar_10: (:class:`~torch.Tensor`), mean average recall for 10 detections per image
- mar_100: (:class:`~torch.Tensor`), mean average recall for 100 detections per image
- mar_{mdt[0]}: (:class:`~torch.Tensor`), mean average recall for `max_detection_thresholds[0]` (default 1)
detection per image
- mar_{mdt[1]}: (:class:`~torch.Tensor`), mean average recall for `max_detection_thresholds[1]` (default 10)
detection per image
- mar_{mdt[1]}: (:class:`~torch.Tensor`), mean average recall for `max_detection_thresholds[2]` (default 100)
detection per image
- mar_small: (:class:`~torch.Tensor`), mean average recall for small objects
- mar_medium: (:class:`~torch.Tensor`), mean average recall for medium objects
- mar_large: (:class:`~torch.Tensor`), mean average recall for large objects
Expand All @@ -140,8 +143,8 @@ class MeanAveragePrecision(Metric):
IoU=0.75
- map_per_class: (:class:`~torch.Tensor`) (-1 if class metrics are disabled), mean average precision per
observed class
- mar_100_per_class: (:class:`~torch.Tensor`) (-1 if class metrics are disabled), mean average recall for 100
detections per image per observed class
- mar_{mdt[2]}_per_class: (:class:`~torch.Tensor`) (-1 if class metrics are disabled), mean average recall for
`max_detection_thresholds[2]` (default 100) detections per image per observed class
- classes (:class:`~torch.Tensor`), list of all observed classes
For an example on how to use this metric check the `torchmetrics mAP example`_.
Expand Down Expand Up @@ -184,8 +187,7 @@ class MeanAveragePrecision(Metric):
with step ``0.01``. Else provide a list of floats.
max_detection_thresholds:
Thresholds on max detections per image. If set to `None` will use thresholds ``[1, 10, 100]``.
Else, please provide a list of ints. If the `pycocotools` backend is used then the list needs to have
length 3. If this is a problem, shift to `faster_coco_eval` which supports more detection thresholds.
Else, please provide a list of ints of length 3, which is the only supported length by both backends.
class_metrics:
Option to enable per-class metrics for mAP and mAR_100. Has a performance impact that scales linearly with
the number of classes in the dataset.
Expand Down Expand Up @@ -410,10 +412,10 @@ def __init__(
f"Expected argument `max_detection_thresholds` to either be `None` or a list of ints"
f" but got {max_detection_thresholds}"
)
if max_detection_thresholds is not None and backend == "pycocotools" and len(max_detection_thresholds) != 3:
if max_detection_thresholds is not None and len(max_detection_thresholds) != 3:
raise ValueError(
"When using `pycocotools` backend the number of max detection thresholds should be 3 else"
f" it will not work correctly with the backend. Got value {len(max_detection_thresholds)}."
"When providing a list of max detection thresholds it should have length 3."
" Got value {len(max_detection_thresholds)}"
)
max_det_thr, _ = torch.sort(torch.tensor(max_detection_thresholds or [1, 10, 100], dtype=torch.int))
self.max_detection_thresholds = max_det_thr.tolist()
Expand Down Expand Up @@ -556,7 +558,7 @@ def compute(self) -> dict:
coco_eval.params.maxDets = self.max_detection_thresholds

map_per_class_list = []
mar_100_per_class_list = []
mar_per_class_list = []
for class_id in self._get_classes():
coco_eval.params.catIds = [class_id]
with contextlib.redirect_stdout(io.StringIO()):
Expand All @@ -566,18 +568,18 @@ def compute(self) -> dict:
class_stats = coco_eval.stats

map_per_class_list.append(torch.tensor([class_stats[0]]))
mar_100_per_class_list.append(torch.tensor([class_stats[8]]))
mar_per_class_list.append(torch.tensor([class_stats[8]]))

map_per_class_values = torch.tensor(map_per_class_list, dtype=torch.float32)
mar_100_per_class_values = torch.tensor(mar_100_per_class_list, dtype=torch.float32)
mar_per_class_values = torch.tensor(mar_per_class_list, dtype=torch.float32)
else:
map_per_class_values = torch.tensor([-1], dtype=torch.float32)
mar_100_per_class_values = torch.tensor([-1], dtype=torch.float32)
mar_per_class_values = torch.tensor([-1], dtype=torch.float32)
prefix = "" if len(self.iou_type) == 1 else f"{i_type}_"
result_dict.update(
{
f"{prefix}map_per_class": map_per_class_values,
f"{prefix}mar_100_per_class": mar_100_per_class_values,
f"{prefix}mar_{self.max_detection_thresholds[-1]}_per_class": mar_per_class_values,
},
)
result_dict.update({"classes": torch.tensor(self._get_classes(), dtype=torch.int32)})
Expand Down Expand Up @@ -616,19 +618,19 @@ def _get_coco_datasets(self, average: Literal["macro", "micro"]) -> Tuple[object

return coco_preds, coco_target

@staticmethod
def _coco_stats_to_tensor_dict(stats: List[float], prefix: str) -> Dict[str, Tensor]:
def _coco_stats_to_tensor_dict(self, stats: List[float], prefix: str) -> Dict[str, Tensor]:
"""Converts the output of COCOeval.stats to a dict of tensors."""
mdt = self.max_detection_thresholds
return {
f"{prefix}map": torch.tensor([stats[0]], dtype=torch.float32),
f"{prefix}map_50": torch.tensor([stats[1]], dtype=torch.float32),
f"{prefix}map_75": torch.tensor([stats[2]], dtype=torch.float32),
f"{prefix}map_small": torch.tensor([stats[3]], dtype=torch.float32),
f"{prefix}map_medium": torch.tensor([stats[4]], dtype=torch.float32),
f"{prefix}map_large": torch.tensor([stats[5]], dtype=torch.float32),
f"{prefix}mar_1": torch.tensor([stats[6]], dtype=torch.float32),
f"{prefix}mar_10": torch.tensor([stats[7]], dtype=torch.float32),
f"{prefix}mar_100": torch.tensor([stats[8]], dtype=torch.float32),
f"{prefix}mar_{mdt[0]}": torch.tensor([stats[6]], dtype=torch.float32),
f"{prefix}mar_{mdt[1]}": torch.tensor([stats[7]], dtype=torch.float32),
f"{prefix}mar_{mdt[2]}": torch.tensor([stats[8]], dtype=torch.float32),
f"{prefix}mar_small": torch.tensor([stats[9]], dtype=torch.float32),
f"{prefix}mar_medium": torch.tensor([stats[10]], dtype=torch.float32),
f"{prefix}mar_large": torch.tensor([stats[11]], dtype=torch.float32),
Expand Down
30 changes: 8 additions & 22 deletions tests/unittests/detection/test_map.py
Original file line number Diff line number Diff line change
Expand Up @@ -861,6 +861,10 @@ def test_many_detection_thresholds(self, backend):
else:
assert round(res["map"].item(), 5) == 0.6

assert "mar_1" in res
assert "mar_10" in res
assert "mar_1000" in res

@pytest.mark.parametrize("max_detection_thresholds", [[1, 10], [1, 10, 50, 100]])
def test_with_more_and_less_detection_thresholds(self, max_detection_thresholds, backend):
"""Test how metric is working when list of max detection thresholds is not 3.
Expand All @@ -869,25 +873,7 @@ def test_with_more_and_less_detection_thresholds(self, max_detection_thresholds,
https://github.com/ppwwyyxx/cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py#L461
"""
preds = [
{
"boxes": torch.tensor([[258.0, 41.0, 606.0, 285.0]]),
"scores": torch.tensor([0.536]),
"labels": torch.tensor([0]),
}
]
target = [
{
"boxes": torch.tensor([[214.0, 41.0, 562.0, 285.0]]),
"labels": torch.tensor([0]),
}
]

if backend == "pycocotools":
with pytest.raises(
ValueError, match="When using `pycocotools` backend the number of max detection thresholds should.*"
):
metric = MeanAveragePrecision(max_detection_thresholds=max_detection_thresholds, backend=backend)
else:
metric = MeanAveragePrecision(max_detection_thresholds=max_detection_thresholds, backend=backend)
metric(preds, target)
with pytest.raises(
ValueError, match="When providing a list of max detection thresholds it should have length 3.*"
):
MeanAveragePrecision(max_detection_thresholds=max_detection_thresholds, backend=backend)

0 comments on commit 38d6375

Please sign in to comment.