Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

save last model after saving top_k when save_last=True #2881

Merged
merged 9 commits into from
Aug 8, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

- Fixed LR finder and `hparams` compatibility ([#2821](https://github.com/PyTorchLightning/pytorch-lightning/pull/2821))

- Fixed `ModelCheckpoint` not saving the latest information when `save_last=True` ([#2881](https://github.com/PyTorchLightning/pytorch-lightning/pull/2881))

## [0.8.5] - 2020-07-09

### Added
Expand Down
12 changes: 8 additions & 4 deletions pytorch_lightning/callbacks/model_checkpoint.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,10 @@ class ModelCheckpoint(Callback):

"""

CHECKPOINT_NAME_LAST = "last.ckpt"
CHECKPOINT_STATE_BEST_SCORE = "checkpoint_callback_best_model_score"
CHECKPOINT_STATE_BEST_PATH = "checkpoint_callback_best_model_path"

def __init__(self, filepath: Optional[str] = None, monitor: str = 'val_loss', verbose: bool = False,
save_last: bool = False, save_top_k: int = 1, save_weights_only: bool = False,
mode: str = 'auto', period: int = 1, prefix: str = ''):
Expand Down Expand Up @@ -302,10 +306,6 @@ def on_validation_end(self, trainer, pl_module):

self.epoch_last_check = epoch

if self.save_last:
filepath = os.path.join(self.dirpath, self.prefix + 'last.ckpt')
self._save_model(filepath, trainer, pl_module)

filepath = self.format_checkpoint_name(epoch, metrics)
version_cnt = 0
while os.path.isfile(filepath):
Expand Down Expand Up @@ -340,6 +340,10 @@ def on_validation_end(self, trainer, pl_module):
assert trainer.global_rank == 0, 'tried to make a checkpoint from non global_rank=0'
self._save_model(filepath, trainer, pl_module)

if self.save_last:
filepath = os.path.join(self.dirpath, self.prefix + ModelCheckpoint.CHECKPOINT_NAME_LAST)
self._save_model(filepath, trainer, pl_module)

def _do_check_save(self, filepath, current, epoch, trainer, pl_module):
# remove kth

Expand Down
10 changes: 5 additions & 5 deletions pytorch_lightning/trainer/training_io.py
Original file line number Diff line number Diff line change
Expand Up @@ -355,8 +355,8 @@ def dump_checkpoint(self, weights_only: bool = False) -> dict:
if checkpoint_callbacks:
# we add the official checkpoint callback to the end of the list
# extra user provided callbacks will not be persisted yet
checkpoint['checkpoint_callback_best_model_score'] = self.checkpoint_callback.best_model_score
checkpoint['checkpoint_callback_best_model_path'] = self.checkpoint_callback.best_model_path
checkpoint[ModelCheckpoint.CHECKPOINT_STATE_BEST_SCORE] = self.checkpoint_callback.best_model_score
checkpoint[ModelCheckpoint.CHECKPOINT_STATE_BEST_PATH] = self.checkpoint_callback.best_model_path

if early_stopping_callbacks and checkpoint_callbacks:
# we add the official early stopping callback to the end of the list
Expand Down Expand Up @@ -437,16 +437,16 @@ def restore_training_state(self, checkpoint):
early_stopping_callbacks = [c for c in self.callbacks if isinstance(c, EarlyStopping)]

if checkpoint_callbacks:
if 'checkpoint_callback_best_model_score' in checkpoint:
checkpoint_callbacks[-1].best_model_score = checkpoint['checkpoint_callback_best_model_score']
if ModelCheckpoint.CHECKPOINT_STATE_BEST_SCORE in checkpoint:
checkpoint_callbacks[-1].best_model_score = checkpoint[ModelCheckpoint.CHECKPOINT_STATE_BEST_SCORE]
else:
# Old naming until version 0.7.6
rank_zero_warn(
'Loading a checkpoint created with an old version of Lightning; '
'this will not be supported in the future.'
)
checkpoint_callbacks[-1].best_model_score = checkpoint['checkpoint_callback_best']
checkpoint_callbacks[-1].best_model_path = checkpoint['checkpoint_callback_best_model_path']
checkpoint_callbacks[-1].best_model_path = checkpoint[ModelCheckpoint.CHECKPOINT_STATE_BEST_PATH]

if early_stopping_callbacks:
state = checkpoint['early_stop_callback_state_dict']
Expand Down
37 changes: 36 additions & 1 deletion tests/callbacks/test_model_checkpoint.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,10 @@

import cloudpickle
import pytest
import torch

import tests.base.develop_utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from tests.base import EvalModelTemplate
Expand Down Expand Up @@ -93,3 +94,37 @@ def test_model_checkpoint_no_extraneous_invocations(tmpdir):
)
result = trainer.fit(model)
assert 1 == result


def test_model_checkpoint_save_last_checkpoint_contents(tmpdir):
""" Tests that the checkpoint saved as 'last.ckpt' contains the latest information. """
seed_everything(100)
model = EvalModelTemplate()
num_epochs = 3
model_checkpoint = ModelCheckpoint(filepath=tmpdir, save_top_k=num_epochs, save_last=True)
trainer = Trainer(
default_root_dir=tmpdir,
early_stop_callback=False,
checkpoint_callback=model_checkpoint,
max_epochs=num_epochs,
)
trainer.fit(model)
path_last_epoch = model_checkpoint.format_checkpoint_name(num_epochs - 1, {}) # epoch=3.ckpt
path_last = str(tmpdir / ModelCheckpoint.CHECKPOINT_NAME_LAST) # last.ckpt
assert path_last_epoch != path_last
ckpt_last_epoch = torch.load(path_last_epoch)
ckpt_last = torch.load(path_last)
matching_keys = (
"epoch",
"global_step",
ModelCheckpoint.CHECKPOINT_STATE_BEST_SCORE,
ModelCheckpoint.CHECKPOINT_STATE_BEST_PATH,
)
for key in matching_keys:
assert ckpt_last_epoch[key] == ckpt_last[key]

# it is easier to load the model objects than to iterate over the raw dict of tensors
model_last_epoch = EvalModelTemplate.load_from_checkpoint(path_last_epoch)
model_last = EvalModelTemplate.load_from_checkpoint(path_last)
for w0, w1 in zip(model_last_epoch.parameters(), model_last.parameters()):
assert w0.eq(w1).all()