Skip to content

Commit

Permalink
Sanitize None params during pruning (#6836)
Browse files Browse the repository at this point in the history
* sanitize none params during pruning

* amend
  • Loading branch information
karthikprasad authored Apr 5, 2021
1 parent 264aa68 commit c3da7f5
Show file tree
Hide file tree
Showing 3 changed files with 17 additions and 9 deletions.
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

### Fixed

- Sanitize `None` params during pruning ([#6836](https://github.com/PyTorchLightning/pytorch-lightning/pull/6836))


- Made the `Plugin.reduce` method more consistent across all Plugins to reflect a mean-reduction by default ([#6011](https://github.com/PyTorchLightning/pytorch-lightning/pull/6011))


Expand Down
4 changes: 3 additions & 1 deletion pytorch_lightning/callbacks/pruning.py
Original file line number Diff line number Diff line change
Expand Up @@ -422,7 +422,9 @@ def sanitize_parameters_to_prune(
current_modules = [m for m in pl_module.modules() if not isinstance(m, _MODULE_CONTAINERS)]

if parameters_to_prune is None:
parameters_to_prune = [(m, p) for p in parameters for m in current_modules if hasattr(m, p)]
parameters_to_prune = [
(m, p) for p in parameters for m in current_modules if getattr(m, p, None) is not None
]
elif (
isinstance(parameters_to_prune, (list, tuple)) and len(parameters_to_prune) > 0
and all(len(p) == 2 for p in parameters_to_prune)
Expand Down
19 changes: 11 additions & 8 deletions tests/callbacks/test_pruning.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def __init__(self):
self.layer = Sequential(
OrderedDict([
("mlp_1", nn.Linear(32, 32)),
("mlp_2", nn.Linear(32, 32)),
("mlp_2", nn.Linear(32, 32, bias=False)),
("mlp_3", nn.Linear(32, 2)),
])
)
Expand Down Expand Up @@ -85,7 +85,10 @@ def train_with_pruning_callback(
if parameters_to_prune:
pruning_kwargs["parameters_to_prune"] = [(model.layer.mlp_1, "weight"), (model.layer.mlp_2, "weight")]
else:
pruning_kwargs["parameter_names"] = ["weight"]
if isinstance(pruning_fn, str) and pruning_fn.endswith("_structured"):
pruning_kwargs["parameter_names"] = ["weight"]
else:
pruning_kwargs["parameter_names"] = ["weight", "bias"]
if isinstance(pruning_fn, str) and pruning_fn.endswith("_structured"):
pruning_kwargs["pruning_dim"] = 0
if pruning_fn == "ln_structured":
Expand Down Expand Up @@ -249,14 +252,14 @@ def test_multiple_pruning_callbacks(tmpdir, caplog, make_pruning_permanent: bool
actual = [m for m in actual if m.startswith("Applied")]
assert actual == [
"Applied `L1Unstructured`. Pruned: 0/1122 (0.00%) -> 544/1122 (48.48%)",
"Applied `L1Unstructured` to `Linear(in_features=32, out_features=32, bias=True).weight` with amount=0.5. Pruned: 0 (0.00%) -> 506 (49.41%)", # noqa: E501
"Applied `L1Unstructured` to `Linear(in_features=32, out_features=2, bias=True).weight` with amount=0.5. Pruned: 0 (0.00%) -> 38 (59.38%)", # noqa: E501
"Applied `L1Unstructured` to `Linear(in_features=32, out_features=32, bias=True).weight` with amount=0.5. Pruned: 0 (0.00%) -> 500 (48.83%)", # noqa: E501
"Applied `L1Unstructured` to `Linear(in_features=32, out_features=2, bias=True).weight` with amount=0.5. Pruned: 0 (0.00%) -> 44 (68.75%)", # noqa: E501
"Applied `RandomUnstructured`. Pruned: 544/1122 (48.48%) -> 680/1122 (60.61%)",
"Applied `RandomUnstructured` to `Linear(in_features=32, out_features=32, bias=True).weight` with amount=0.25. Pruned: 506 (49.41%) -> 633 (61.82%)", # noqa: E501
"Applied `RandomUnstructured` to `Linear(in_features=32, out_features=2, bias=True).weight` with amount=0.25. Pruned: 38 (59.38%) -> 47 (73.44%)", # noqa: E501
"Applied `RandomUnstructured` to `Linear(in_features=32, out_features=32, bias=True).weight` with amount=0.25. Pruned: 500 (48.83%) -> 635 (62.01%)", # noqa: E501
"Applied `RandomUnstructured` to `Linear(in_features=32, out_features=2, bias=True).weight` with amount=0.25. Pruned: 44 (68.75%) -> 45 (70.31%)", # noqa: E501
"Applied `L1Unstructured`. Pruned: 680/1122 (60.61%) -> 884/1122 (78.79%)",
"Applied `L1Unstructured` to `Linear(in_features=32, out_features=32, bias=True).weight` with amount=0.5. Pruned: 633 (61.82%) -> 828 (80.86%)", # noqa: E501
"Applied `L1Unstructured` to `Linear(in_features=32, out_features=2, bias=True).weight` with amount=0.5. Pruned: 47 (73.44%) -> 56 (87.50%)", # noqa: E501
"Applied `L1Unstructured` to `Linear(in_features=32, out_features=32, bias=True).weight` with amount=0.5. Pruned: 635 (62.01%) -> 830 (81.05%)", # noqa: E501
"Applied `L1Unstructured` to `Linear(in_features=32, out_features=2, bias=True).weight` with amount=0.5. Pruned: 45 (70.31%) -> 54 (84.38%)", # noqa: E501
]

filepath = str(tmpdir / "foo.ckpt")
Expand Down

0 comments on commit c3da7f5

Please sign in to comment.