-
Notifications
You must be signed in to change notification settings - Fork 3.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
90929fa
commit 04303b3
Showing
1 changed file
with
133 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
# Copyright The PyTorch Lightning team. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
# -------------------------------------------- | ||
# -------------------------------------------- | ||
# -------------------------------------------- | ||
# USE THIS MODEL TO REPRODUCE A BUG YOU REPORT | ||
# -------------------------------------------- | ||
# -------------------------------------------- | ||
# -------------------------------------------- | ||
import os | ||
import torch | ||
from torch.utils.data import Dataset | ||
from pytorch_lightning import Trainer, LightningModule | ||
|
||
|
||
class RandomDataset(Dataset): | ||
def __init__(self, size, length): | ||
self.len = length | ||
self.data = torch.randn(length, size) | ||
|
||
def __getitem__(self, index): | ||
return self.data[index] | ||
|
||
def __len__(self): | ||
return self.len | ||
|
||
|
||
class BoringModel(LightningModule): | ||
|
||
def __init__(self): | ||
""" | ||
Testing PL Module | ||
Use as follows: | ||
- subclass | ||
- modify the behavior for what you want | ||
class TestModel(BaseTestModel): | ||
def training_step(...): | ||
# do your own thing | ||
or: | ||
model = BaseTestModel() | ||
model.training_epoch_end = None | ||
""" | ||
super().__init__() | ||
self.layer = torch.nn.Linear(32, 2) | ||
|
||
def forward(self, x): | ||
return self.layer(x) | ||
|
||
def loss(self, batch, prediction): | ||
# An arbitrary loss to have a loss that updates the model weights during `Trainer.fit` calls | ||
return torch.nn.functional.mse_loss(prediction, torch.ones_like(prediction)) | ||
|
||
def step(self, x): | ||
x = self.layer(x) | ||
out = torch.nn.functional.mse_loss(x, torch.ones_like(x)) | ||
return out | ||
|
||
def training_step(self, batch, batch_idx): | ||
output = self.layer(batch) | ||
loss = self.loss(batch, output) | ||
return {"loss": loss} | ||
|
||
def training_step_end(self, training_step_outputs): | ||
return training_step_outputs | ||
|
||
def training_epoch_end(self, outputs) -> None: | ||
torch.stack([x["loss"] for x in outputs]).mean() | ||
|
||
def validation_step(self, batch, batch_idx): | ||
output = self.layer(batch) | ||
loss = self.loss(batch, output) | ||
return {"x": loss} | ||
|
||
def validation_epoch_end(self, outputs) -> None: | ||
torch.stack([x['x'] for x in outputs]).mean() | ||
|
||
def test_step(self, batch, batch_idx): | ||
output = self.layer(batch) | ||
loss = self.loss(batch, output) | ||
return {"y": loss} | ||
|
||
def test_epoch_end(self, outputs) -> None: | ||
torch.stack([x["y"] for x in outputs]).mean() | ||
|
||
def configure_optimizers(self): | ||
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) | ||
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) | ||
return [optimizer], [lr_scheduler] | ||
|
||
|
||
def run_test(): | ||
class TestModel(BoringModel): | ||
|
||
def on_train_epoch_start(self) -> None: | ||
print('override any method to prove your bug') | ||
|
||
# fake data | ||
train_data = torch.utils.data.DataLoader(RandomDataset(32, 64)) | ||
val_data = torch.utils.data.DataLoader(RandomDataset(32, 64)) | ||
test_data = torch.utils.data.DataLoader(RandomDataset(32, 64)) | ||
|
||
# model | ||
model = TestModel() | ||
trainer = Trainer( | ||
default_root_dir=os.getcwd(), | ||
limit_train_batches=1, | ||
limit_val_batches=1, | ||
max_epochs=1, | ||
weights_summary=None, | ||
) | ||
trainer.fit(model, train_data, val_data) | ||
trainer.test(test_dataloaders=test_data) | ||
|
||
|
||
if __name__ == '__main__': | ||
run_test() |