We have a web application that illustrates the evaluation plots and functions here.
For a live video demo of this web app, you can check here.
Running python 3.7 and linux64 on your machine
git clone https://github.com/Tidesun/LRGASP_visualization.git
cd LRGASP_visualization
python -m venv base
source base/bin/activate
pip install --upgrade pip
pip install -r requirements.txt
- Gene/isoform annotation: GTF format
- Human and Mouse reference annoation with spike-in at Link
- Quantification result:
# Sample | # Methods | Format | Columns | Example Data Path |
---|---|---|---|---|
Single | Single | TSV | First column: ID Second column: Quanficiation result for single sample |
single sample data |
Multiple | Single | TSV | First column: ID Next N columns: Quantification results for multiple samples |
multiple samples data |
Single | Multiple | ZIP | First column: ID Second column: Quanficiation result for single sample |
multiple methods with single sample |
Multiple | Multiple | ZIP | First column: ID Next N columns: Quantification results for multiple samples |
multiple methods with multiple samples |
* TSV format is defined in (https://github.com/LRGASP/lrgasp-submissions/blob/master/docs/expression_matrix_format.md)
* Multiple methods result files should be named as the method name and the output will be named accordingly.
- Expression ground truth:
- TSV format as defined in (https://github.com/LRGASP/lrgasp-submissions/blob/master/docs/expression_matrix_format.md).
- Report webpage: HTML format
- Evaluation graphs: PNG and PDF format
Section | Single sample | Multiple sample with Ground Truth | Multiple sample without Ground Truth |
---|---|---|---|
Gene features |
|
|
|
Estimation Error |
|
|
|
Resolution Entropy |
|
|
|
Consistency |
|
|
|
Irreproducibility |
|
|
|
Fold change based evaluation |
|
||
Split Statistics |
|
|
|
source base/bin/activate
python encode_quantification/main.py -a ANNOTATION -r RESULT -t TRUTH -o OUTPUT --num_method NUM_METHOD --num_samples NUM_SAMPLES
Quantification evaluation reporter
optional arguments:
-h, --help show this help message and exit
required named arguments:
-a ANNOTATION, --annotation ANNOTATION
The path of annotation file [GTF]
-r RESULT, --result RESULT
The path of quantification result file [TSV\ZIP]
-o OUTPUT, --output OUTPUT
The path of output directory
--num_method NUM_METHOD
Whether multi method data given ['Single' or 'Multi']
--num_samples NUM_SAMPLES
Whether multi sample data given ['Single' or 'Multi']
optional arguments:
-t TRUTH, --truth TRUTH
The path of true expression file [TSV]
--seq SEQ Whether long read data given ['LongRead' or
'ShortRead'] [default:LongRead]
--K_value_selection K_VALUE_SELECTION
Which K value calculation['Condition_number','K_value'
,'Generalized_condition_number']
[default:Condition_number]
source base/bin/activate
python encode_quantification/main.py \
-a example/chr1.gtf \
-r example/singlesample/methodA.tsv \
-t example/singlesample/truth.tsv \
-o example/reports \
--num_method Single \
--num_samples Single
source base/bin/activate
python encode_quantification/main.py \
-a example/chr1.gtf \
-r example/multisample/methodA.tsv \
-t example/multisample/truth.tsv \
-o example/reports \
--num_method Single \
--num_samples Multi
source base/bin/activate
python encode_quantification/main.py \
-a example/chr1.gtf \
-r example/multisample/methodA.tsv \
-o example/reports \
--num_method Single \
--num_samples Multi
source base/bin/activate
python encode_quantification/main.py \
-a example/chr1.gtf \
-r example/singlesample/methods.zip \
-t example/singlesample/truth.tsv \
-o example/reports \
--num_method Multi \
--num_samples Single
source base/bin/activate
python encode_quantification/main.py \
-a example/chr1.gtf \
-r example/multisample/methods.zip \
-t example/multisample/truth.tsv \
-o example/reports \
--num_method Multi \
--num_samples Multi
source base/bin/activate
python encode_quantification/main.py \
-a example/chr1.gtf \
-r example/multisample/methods.zip \
-o example/reports \
--num_method Multi \
--num_samples Multi