This is the implementation based on Mask-RCNN for Tless dataset.
Modification :
./data/datasets/__init__.py
./data/datasets/build.py
./data/datasets/evaluation/__init__.py
./data/transforms/__init__.py
./data/transforms/transforms.py
./data/transforms/build.py
./config/defaults.py
./config/path_catalog.py
Add:
./demo/predictor_nms.py -- based on original predictor.py, added NMS over the predictions
./Demo_COCO .py -- demo python file without Jupyter Notebook. To be renamed.
./Mask_R-CNN_CPU.ipynb -- Modification based on Mask_R-CNN_Demo, added the weight loading function for trained model.
./MaskRCNN_Dataset.py --Dataloader, Mask generator, augmentation .
Run the following command to train the network for tless.
python tools/train_net.py --config-file "configs/caffe2/e2e_mask_rcnn_R_50_FPN_1x_caffe2.yaml" DATASETS.TRAIN '("tless_train_datasetv2",)' SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025 SOLVER.WARMUP_ITERS 500 SOLVER.MAX_ITER 5000 SOLVER.STEPS "(480000, 640000)" TEST.IMS_PER_BATCH 1 MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 12000
Note the dataset evaluation function is still implementating. Error will occur after testing prediction.
For demo, please use the jupyter notebook of Mask_R-CNN_CPU.ipynb.
The datasets directory should use the following format,
-datasets
|-coco
|-tless
|-background : background dataset for small dataset augmentation.
|-test_primesense
|-train_primesense
|-result : saving directory for demo.