Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sharedRmsProp and async nature params #15

Merged
merged 1 commit into from
May 7, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions AsyncAgent.lua
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,15 @@ local AsyncModel = require 'AsyncModel'
local CircularQueue = require 'structures/CircularQueue'
local classic = require 'classic'
local optim = require 'optim'
require 'modules/rmspropm' -- Add RMSProp with momentum
require 'modules/sharedRmsProp'
require 'classic.torch'

local AsyncAgent = classic.class('AsyncAgent')

local EPSILON_ENDS = { 0.01, 0.1, 0.5}
local EPSILON_PROBS = { 0.4, 0.7, 1 }

function AsyncAgent:_init(opt, policyNet, targetNet, theta, counters)
function AsyncAgent:_init(opt, policyNet, targetNet, theta, counters, sharedG)
log.info('creating AsyncAgent')
local asyncModel = AsyncModel(opt)
self.env, self.model = asyncModel:getEnvAndModel()
Expand All @@ -21,7 +21,8 @@ function AsyncAgent:_init(opt, policyNet, targetNet, theta, counters)
self.optimiser = optim[opt.optimiser]
self.optimParams = {
learningRate = opt.eta,
momentum = opt.momentum
momentum = opt.momentum,
g = sharedG
}

local actionSpec = self.env:getActionSpec()
Expand Down
13 changes: 9 additions & 4 deletions AsyncMaster.lua
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
require 'socket'
local AsyncModel = require 'AsyncModel'
local AsyncAgent = require 'AsyncAgent'
local class = require 'classic'
Expand All @@ -10,9 +11,10 @@ local TARGET_UPDATER = 1
local VALIDATOR = 2

local function checkNotNan(t)
local ok = t:ne(t):sum() == 0
local sum = t:sum()
local ok = sum == sum
if not ok then
log.error('ERROR'.. t:sum())
log.error('ERROR'.. sum)
end
assert(ok)
end
Expand Down Expand Up @@ -82,6 +84,7 @@ function AsyncMaster:_init(opt)

self.theta = policyNet:getParameters()
self.targetTheta = targetNet:getParameters()
local sharedG = self.theta:clone():zero()

self.controlPool = threads.Threads(2)
self.controlPool:specific(true)
Expand All @@ -93,7 +96,7 @@ function AsyncMaster:_init(opt)
self.controlPool:addjob(VALIDATOR, torchSetup(opt))
self.controlPool:addjob(VALIDATOR, function()
local AsyncAgent = require 'AsyncAgent'
evalAgent = AsyncAgent(opt, policyNet, targetNet, theta, counters)
evalAgent = AsyncAgent(opt, policyNet, targetNet, theta, counters, sharedG)
end)

self.controlPool:synchronize()
Expand All @@ -113,7 +116,7 @@ function AsyncMaster:_init(opt)
local mutex1 = threads1.Mutex(mutexId)
mutex1:lock()
local AsyncAgent = require 'AsyncAgent'
agent = AsyncAgent(opt, policyNet, targetNet, theta, counters)
agent = AsyncAgent(opt, policyNet, targetNet, theta, counters, sharedG)
mutex1:unlock()
end
)
Expand Down Expand Up @@ -158,6 +161,8 @@ function AsyncMaster:start()
local countSum = counters:sum()
if countSum < 0 then return end

-- TODO report speed

local countSince = countSum - lastUpdate
if countSince > opt.tau then
lastUpdate = countSum
Expand Down
3 changes: 2 additions & 1 deletion async_main.lua
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ cmd:option('-doubleQ', 'true', 'Use Double Q-learning')
-- Note from Georg Ostrovski: The advantage operators and Double DQN are not entirely orthogonal as the increased action gap seems to reduce the statistical bias that leads to value over-estimation in a similar way that Double DQN does
cmd:option('-PALpha', 0.9, 'Persistent advantage learning parameter α (0 to disable)')
-- Training options
cmd:option('-optimiser', 'rmspropm', 'Training algorithm') -- RMSProp with momentum as found in "Generating Sequences With Recurrent Neural Networks"
cmd:option('-optimiser', 'sharedRmsProp', 'Training algorithm')
cmd:option('-eta', 0.0000625, 'Learning rate η') -- Prioritied experience replay learning rate (1/4 that of DQN; does not account for Duel as well)
cmd:option('-momentum', 0.95, 'Gradient descent momentum')
cmd:option('-batchSize', 5, 'Accumulate gradient x batchSize')
Expand Down Expand Up @@ -111,6 +111,7 @@ opt.Tensor = function(...)
return torch.Tensor(...)
end

log.info(opt)

local master = AsyncMaster(opt)

Expand Down
2 changes: 1 addition & 1 deletion async_run.sh
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ if [ "$PAPER" == "demo" ]; then
th async_main.lua -async $ASYNC -eta 0.00025 -doubleQ false -duel false -optimiser adam -steps 15000000 -tau 4 -epsilonSteps 10000 -valFreq 10000 -valSteps 6000 -PALpha 0 "$@"
elif [ "$PAPER" == "nature" ]; then
# Nature
th async_main.lua -async $ASYNC -game $GAME -duel false -tau 320000 -doubleQ false -PALpha 0 -eta 0.00025 -gradClip 0 "$@"
th async_main.lua -async $ASYNC -game $GAME -duel false -tau 40000 -optimiser sharedRmsProp -epsilonSteps 4000000 -doubleQ false -PALpha 0 -eta 0.0016 -gradClip 0 "$@"
elif [ "$PAPER" == "doubleq" ]; then
# Double-Q (tuned)
th async_main.lua -async $ASYNC -game $GAME -duel false -PALpha 0 -eta 0.00025 -gradClip 0 "$@"
Expand Down
29 changes: 29 additions & 0 deletions modules/sharedRmsProp.lua
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
function optim.sharedRmsProp(opfunc, x, config, state)
-- Get state
local config = config or {}
local state = state or config
local lr = config.learningRate or 1e-2
local momentum = config.momentum or 0.95
local epsilon = config.epsilon or 0.01

-- Evaluate f(x) and df/dx
local fx, dfdx = opfunc(x)

-- Initialise storage
if not state.g then
state.g = torch.Tensor():typeAs(x):resizeAs(dfdx):zero()
end

if not state.tmp then
state.tmp = torch.Tensor():typeAs(x):resizeAs(dfdx)
end

state.g:mul(momentum):addcmul(1 - momentum, dfdx, dfdx)
state.tmp:copy(state.g):add(epsilon):sqrt()

-- Update x = x - lr x df/dx / tmp
x:addcdiv(-lr, dfdx, state.tmp)

-- Return x*, f(x) before optimisation
return x, {fx}
end